首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bizarre virus‐like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as ‘wild rose leaf rosette disease’ (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named ‘rose leaf rosette‐associated virus’ (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17 653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus.  相似文献   

2.
A novel negative‐stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum‐associated virus, is flexuous and non‐enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod‐transmitted viruses infecting mammals, and with a group of still unclassified phlebo‐like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA‐dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo‐like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate‐restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans‐kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed.  相似文献   

3.
A mechanically transmissible virus was isolated from Bedford Giant blackberry plants showing chlorotic mottling and ringspot symptoms growing in Scotland. It infected several herbaceous test plants, many of them symptomlessly. This virus was also transmitted to several Rubus species and cultivars by graft inoculation with scions from the field‐infected Bedford Giant plant. Most grafted plants were infected symptomlessly, but Himalaya Giant blackberry and the hybrid berry Tayberry developed symptoms similar to those in the infected Bedford Giant plant. In the sap of infected Chenopodium quinoa, the virus lost infectivity when diluted 10?4 but not 10?3, after 6 h and 48 h when kept at 20°C and 4°C, respectively, but was infective for more than 8 days when kept at ?15°C. Preparations of purified virus from infected C. quinoa or spinach sedimented as three major nucleoprotein components and consisted of quasi‐isometric particles that varied in size from 24 to 32 nm in diameter and that were not penetrated by negative stain. Such virus particle preparations contained a major polypeptide of ca 28 kDa and three single‐stranded RNA species of estimated size 3.2, 2.8 and 2.1 kb. The complete sequence of the largest RNA (RNA 1, 3478 nt) and the partial sequence of the other RNAs (1863 and 2102 nt long, respectively) were determined and compared with sequences in databases. These findings, together with the biological and biochemical properties of this virus, indicate that it should be regarded as a distinct species in subgroup 1 of the genus Ilarvirus even though it was serologically unrelated to existing members of this subgroup. The virus showed a very distant serological relationship with prune dwarf virus (PDV) but differed significantly from it in the amino acid sequence of its coat protein, experimental host range and symptomatology and was unrelated to PDV at the molecular level. The virus, tentatively named blackberry chlorotic ringspot virus, is therefore a newly described virus and the first ilarvirus found naturally infecting Rubus in the UK.  相似文献   

4.
Lisianthus (Eustoma grandiflorum) grown in screenhouses in Taiwan showed ringspots and concentric line patterns on leaves. A virus having isometric particles approximately 30–32 nm in diameter was isolated from affected lisianthus. Combined results of biological, cytological, serological, molecular and phylogenetic analyses show that the virus can be identified as Pothos latent virus (PoLV), genus Aureusvirus, family Tombusviridae. Inoculating the virus on non‐infected lisianthus plants reproduced the symptoms previously observed in the field. So, this is the first report of PoLV causing disease in lisianthus and the first report of the virus in Taiwan.  相似文献   

5.
6.
Y Bi  AK Tugume  JP Valkonen 《PloS one》2012,7(8):e42758

Background

Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21–24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS).

Methodology/Principal Findings

SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus—tentatively named as Woolly burdock yellow vein virus—was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested.

Conclusions/Significance

These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants.  相似文献   

7.
Tobacco bushy top disease is caused by a complex of the viruses tobacco bushy top virus (TBTV, a member of the genus Umbravirus) and tobacco vein distorting virus (TVDV, a member of the genus Polerovirus), which acts as a helper virus encapsidating the TBTV genomic RNA. RNA from purified virions is separated as five bands. The two largest (6.0 and 4.2 kb) were shown by Northern blot analysis to be the genomic RNAs of TVDV and TBTV, respectively. A band of about 3 kb was cloned and sequenced and shown to be the RNA of a previously undescribed virus with two open reading frames (ORFs), the second of which is an RNA‐dependent RNA polymerase (RdRp) and is probably expressed by readthrough of the ORF1a stop codon. BLAST and phylogenetic analyses of the RdRp show that it is related to two RNAs previously reported in association with the poleroviruses Beet western yellows virus and Carrot red leaf virus. These three RNAs appear to represent species of a new genus of plant viruses dependent upon a helper polerovirus for their transmission.  相似文献   

8.
Pseudomonas syringae pv. actinidiae (Psa) causes the bacterial canker disease on kiwifruit vines. The disease outbreak has been reported in several countries worldwide, including New Zealand. Here, we briefly reviewed the current situation of Psa infection of kiwifruit vines in New Zealand, the effects of Psa on the New Zealand’s kiwifruit industry, and the disease control and breeding programmes undertaken in response to the outbreak of Psa in New Zealand. Then the methodology of an alternative breeding approach or in vitro breeding, which is a non-GM approach to obtain useful plant tissue culture-derived genetic variation in crop plants, was discussed. As a specific example of potential application of in vitro breeding, a novel plant breeding project idea based on the elemental defence mechanism is to generate Cu/Zn tolerant kiwifruit varieties that exhibit improved Psa tolerance.  相似文献   

9.
10.
Purification and some properties of strawberry mottle virus   总被引:4,自引:0,他引:4  
Strawberry mottle virus (SMoV) (three isolates: HJ, 3E and N) were transmitted to Chenopodium quinoa plants by sap inoculation. All three isolates induced very similar symptoms consisting of chlorotic spots and ringspots in inoculated leaves, and vein chlorosis, mottling, and dwarfing of the upper leaves. SMoV isolate HJ was purified from infected C. quinoa by homogenisation with 10 mM phosphate buffer, pH 7.2 containing 5% Triton X-100, followed by differential, sucrose density-gradient and CsCl equilibrium density-gradient centrifugations. A fraction with a buoyant density of 1.42g- cm-3 after CsCl density-gradient centrifugation was highly infectious to C. quinoa and contained many isometric virus-like particles c. 37 nm in diameter. These virus-like particles were never found in fractions from uninfected preparations. Electrophoretic analysis of a fraction containing virus-like particles revealed that these particles might have a single coat protein subunit with the apparent molecular mass of 26 K daltons and one nucleic acid of 6.6 kilobases. Double-stranded RNA analysis of isolate HJ-infected or uninfected C. quinoa and Fragaria vesca var. semperflorens seedling line ‘Alpine’ plants showed that both infected plants had two infection-specific dsRNA bands of mol. wts 4.5 and 3.9 × 106.  相似文献   

11.
Twelve isolates of beet necrotic yellow vein virus, agent of rhizomania in sugar beet, have been obtained from five European countries and the USA. The isolates were cloned and multiplied in the local lesion host Chenopodium quinoa. By ELISA, a close serological relationship was observed among all the isolates. The isolates differed, however, in the number of viral RNA species present (2, 3 or 4) and in the lengths of RNAs 3 and 4, the two smallest RNAs. A comparison of the symptoms induced by the different isolates in C. quinoa revealed a correlation between the presence of a full-length RNA 3 (about 1850 nucleotides) and the appearance of severe chlorotic local lesions.  相似文献   

12.
13.
Bluetongue virus (BTV), a member of the Orbivirus genus within the Reoviridae family, has a genome of 10 double-stranded RNA segments, with three distinct size classes. Although the packaging of the viral genome is evidently highly specific such that every virus particle contains a set of 10 RNA segments, the order and mechanism of packaging are not understood. In this study we have combined the use of a cell-free in vitro assembly system with a novel RNA–RNA interaction assay to investigate the mechanism of single-stranded (ss) RNAs packaging during nascent capsid assembly. Exclusion of single or multiple ssRNA segments in the packaging reaction or their addition in different order significantly altered the outcome and suggested a particular role for the smallest segment, S10. Our data suggests that genome packaging probably initiates with the smallest segment which triggers RNA–RNA interaction with other smaller segments forming a complex network. Subsequently, the medium to larger size ssRNAs are recruited until the complete genome is packaging into the capsid. The untranslated regions of the smallest RNA segment, S10, is critical for the instigation of this process. We suggest that the selective packaging observed in BTV may also apply to other members of the Reoviridae family.  相似文献   

14.
Three hundred and ninety‐four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co‐infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co‐infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3‐expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.  相似文献   

15.
Intensive survcys of groundnut virus diseases were carried out in Senegal from 1986 to 1990. Peanut clump virus (PCV; furovirus group) was detected in several regions in groundnuts (Arachis hypogaea), showing typical symptoms namely, small dark green leaves, short petioles and internodes, and reduced shoot size resulting in a dwarfed and bushy appearance (clumping) of the infected plants. PCV was also detected in groundnuts exhibiting variable symptoms like chlorotic leaf spots, specking, chlorotic rings or ringspots, line patterns, vein yellowing, mottle or light mosaic etc. with or without clumping. Symptoms induced by these different isolates on the test plant Chenopodium amaranticolor also showed considerable variability. Serological studies of 41 isolates of PCV (collected from Senegal, Burkina Faso, Niger and India), using seven monoclonal antibodies in Triple Antibody Sandwich ELISA (TAS-ELISA), permitted us to distinguish five different serogroups based on their reaction profiles. However, these did not correspond to the five groups formed in an arbitrary classification based on the symptomatology of C. amaranticolor. Serogroups do not correlate with the geographic origin.  相似文献   

16.
Since Emaraviruses have been discovered in 2007 several new species were detected in a range of host plants. Five genome segments of a novel Emaravirus from mosaic-diseased Eurasian aspen (Populus tremula) have been completely determined. The monocistronic, segmented ssRNA genome of the virus shows a genome organisation typical for Emaraviruses encoding the viral RNA-dependent RNA polymerase (RdRP, 268.2 kDa) on RNA1 (7.1 kb), a glycoprotein precursor (GPP, 73.5 kDa) on RNA2 (2.3 kb), the viral nucleocapsid protein (N, 35.6 kDa) on RNA3 (1.6 kb), and a putative movement protein (MP, 41.0 kDa) on RNA4 (1.6 kb). The fifth identified genome segment (RNA5, 1.3 kb) encodes a protein of unknown function (P28, 28.1 kDa). We discovered that it is distantly related to proteins encoded by Emaraviruses, such as P4 of European mountain ash ringspot-associated virus. All proteins from this group contain a central hydrophobic region with a conserved secondary structure and a hydrophobic amino acid stretch, bordered by two highly conserved positions, thus clearly representing a new group of homologues of Emaraviruses. The virus identified in Eurasian aspen is closely associated with observed leaf symptoms, such as mottle, yellow blotching, variegation and chloroses along veins. All five viral RNAs were regularly detectable by RT-PCR in mosaic-diseased P. tremula in Norway, Finland and Sweden (Fennoscandia). Observed symptoms and testing of mosaic-diseased Eurasian aspen by virus-specific RT-PCR targeting RNA3 and RNA4 confirmed a wide geographic distribution of the virus in Fennoscandia. We could demonstrate that the mosaic-disease is graft-transmissible and confirmed that the virus is the causal agent by detection in symptomatic, graft-inoculated seedlings used as rootstocks as well as in the virus-infected scions used for graft-inoculation. Owing to these characteristics, the virus represents a novel species within the genus Emaravirus and was tentatively denominated aspen mosaic-associated virus.  相似文献   

17.
Brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are related positive-strand RNA viruses with tripartite genomes. RNA replication by either virus requires genomic RNAs 1 and 2, which encode protein 1a and the polymeraselike, 94-kilodalton 2a protein, respectively. Proteins 1a and 2a share extensive sequence similarity with proteins encoded by a wide range of other positive-strand RNA viruses of animals and plants. Heterologous combinations of BMV and CCMV RNAs 1 and 2 do not support viral RNA replication, and although BMV RNA2 is amplified in CCMV-infected cells, CCMV RNA2 is not amplified by BMV. Construction of hybrids by precise exchange of segments between BMV and CCMV RNA2 has now allowed preliminary mapping of such virus-specific replication functions in RNA2 and the 2a protein. The ability to support replication in trans with BMV RNA1 segregated with a 5' BMV RNA2 fragment encoding the first 358 2a gene amino acids, while a 5' fragment extending over 281 BMV 2a codons transferred only cis-acting competence for RNA2 amplification in cells coinfected with wild-type BMV. Successful trans-acting function with CCMV RNA1 segregated with a CCMV RNA2 3' fragment that included the last 206 2a gene codons. Thus, the less conserved N- and C-terminal 2a segments appear to be involved in required interaction(s) of this polymeraselike protein with the 1a protein or RNA1 or both. Moreover, when individual hybrid RNA2 molecules that function with either BMV or CCMV RNA1 were tested, BMV- and CCMV-specific differences in recognition and amplification of RNA3 templates appeared to segregate with RNA1.  相似文献   

18.
Brief historyIn 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus. After sequencing the genome of the pathogen, the causal agent of High Plains disease was officially named as High Plains wheat mosaic virus. Hence, High Plains virus, maize red stripe virus, wheat mosaic virus, and High Plains wheat mosaic virus (HPWMoV) are synonyms for the causal agent of High Plains disease.TaxonomyHigh Plains wheat mosaic virus is one of the 21 definitive species in the genus Emaravirus in the family Fimoviridae.VirionThe genomic RNAs are encapsidated in thread‐like nucleocapsids in double‐membrane 80–200 nm spherical or ovoid virions.Genome characterizationThe HPWMoV genome consists of eight single‐stranded negative‐sense RNA segments encoding a single open reading frame (ORF) in each genomic RNA segment. RNA 1 is 6,981‐nucleotide (nt) long, coding for a 2,272 amino acid protein of RNA‐dependent RNA polymerase. RNA 2 is 2,211‐nt long and codes for a 667 amino acid glycoprotein precursor. RNA 3 has two variants of 1,439‐ and 1,441‐nt length that code for 286 and 289 amino acid nucleocapsid proteins, respectively. RNA 4 is 1,682‐nt long, coding for a 364 amino acid protein. RNA 5 and RNA 6 are 1,715‐ and 1,752‐nt long, respectively, and code for 478 and 492 amino acid proteins, respectively. RNA 7 and RNA 8 are 1,434‐ and 1,339‐nt long, code for 305 and 176 amino acid proteins, respectively.Biological propertiesHPWMoV can infect wheat, corn (maize), barley, rye brome, oat, rye, green foxtail, yellow foxtail, and foxtail barley. HPWMoV is transmitted by the wheat curl mite and through corn seed.Disease managementGenetic resistance against HPWMoV in wheat is not available, but most commercial corn hybrids are resistant while sweet corn varieties remain susceptible. Even though corn hybrids are resistant to virus, it still serves as a green bridge host that enables mites to carry the virus from corn to new crop wheat in the autumn. The main management strategy for High Plains disease in wheat relies on the management of green bridge hosts. Cultural practices such as avoiding early planting can be used to avoid mite buildup and virus infections.  相似文献   

19.
The complete nucleotide sequences of genomic RNA1 (9,407 nucleotides [nt]) and RNA2 (8,223 nt) of Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) were determined, revealing that SPCSV possesses the second largest identified positive-strand single-stranded RNA genome among plant viruses after Citrus tristeza virus. RNA1 contains two overlapping open reading frames (ORFs) that encode the replication module, consisting of the putative papain-like cysteine proteinase, methyltransferase, helicase, and polymerase domains. RNA2 contains the Closteroviridae hallmark gene array represented by a heat shock protein homologue (Hsp70h), a protein of 50 to 60 kDa depending on the virus, the major coat protein, and a divergent copy of the coat protein. This grouping resembles the genome organization of Lettuce infectious yellows virus (LIYV), the only other crinivirus for which the whole genomic sequence is available. However, in striking contrast to LIYV, the two genomic RNAs of SPCSV contained nearly identical 208-nt-long 3' terminal sequences, and the ORF for a putative small hydrophobic protein present in LIYV RNA2 was found at a novel position in SPCSV RNA1. Furthermore, unlike any other plant or animal virus, SPCSV carried an ORF for a putative RNase III-like protein (ORF2 on RNA1). Several subgenomic RNAs (sgRNAs) were detected in SPCSV-infected plants, indicating that the sgRNAs formed from RNA1 accumulated earlier in infection than those of RNA2. The 5' ends of seven sgRNAs were cloned and sequenced by an approach that provided compelling evidence that the sgRNAs are capped in infected plants, a novel finding for members of the Closteroviridae.  相似文献   

20.
The class 1 ribonuclease III (RNase III) encoded by Sweet potato chlorotic stunt virus (CSR3) suppresses RNA silencing in plant cells and thereby counters the host antiviral response by cleaving host small interfering RNAs, which are indispensable components of the plant RNA interference (RNAi) pathway. The synergy between sweet potato chlorotic stunt virus and sweet potato feathery mottle virus can reduce crop yields by 90%. Inhibitors of CSR3 might prove efficacious to counter this viral threat, yet no screen has been carried out to identify such inhibitors. Here, we report a novel high-throughput screening (HTS) assay based on fluorescence resonance energy transfer (FRET) for identifying inhibitors of CSR3. For monitoring CSR3 activity via HTS, we used a small interfering RNA substrate that was labelled with a FRET-compatible dye. The optimized HTS assay yielded 109 potential inhibitors of CSR3 out of 6,620 compounds tested from different small-molecule libraries. The three best inhibitor candidates were validated with a dose–response assay. In addition, a parallel screen of the selected candidates was carried out for a similar class 1 RNase III enzyme from Escherichia coli (EcR3), and this screen yielded a different set of inhibitors. Thus, our results show that the CSR3 and EcR3 enzymes were inhibited by distinct types of molecules, indicating that this HTS assay could be widely applied in drug discovery of class 1 RNase III enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号