首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand.  相似文献   

2.
We investigated the bat (Microchiroptera) diversity of four major habitat types within a large Australian subtropical city (Brisbane, Australia) to determine whether species richness was affected by habitat changes associated with urbanization, as suggested from studies elsewhere. Forty sites, ten in each habitat type (remnant bushland, parkland, low‐density residential and high‐density residential) were surveyed using acoustic bat detectors on six non‐consecutive occasions. Fourteen bat species were recorded. The species accumulation curve of the entire Brisbane bat assemblage reached a plateau at 14 species. The total numbers of species in bushland, parkland, low‐density residential and high‐density residential habitats were 14, 13, 14 and 11 species, respectively. Asymptotic estimates of species richness for each habitat were close or equal to these totals. Mean asymptotic estimated species richness differed significantly among habitats, being lowest in high‐density residential sites and highest in low‐density residential sites. Evenness profiles were similar across habitats, and were not strongly dominated by a few species. Partitioning of diversity components showed that landscape (γ) diversity was mainly determined by the high species richness of low‐density residential and bushland habitats (α diversity), rather than high beta (β) diversity among habitats. These findings contradict those of other studies on bat diversity in which species richness was highest within ‘natural’ areas of the urban landscape and assemblages were dominated by one or two species. This highlights the need for caution in making generalizations based on existing information, which is dominated by studies in temperate regions.  相似文献   

3.
Vector‐borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito‐associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next‐generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered (Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human‐impacted landscapes that may ultimately affect vector‐borne disease risk.  相似文献   

4.
Given the veterinary and public health impact of vector‐borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical–statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource‐based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector‐borne pathogens is explored and illustrated with the case of bluetongue virus, a midge‐transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches.  相似文献   

5.
Coastal realignment is now widely instituted in the UK as part of local flood risk management plans to compensate for the loss of European protected habitat and to mitigate the effects of sea‐level rise and coastal squeeze. Coastal aquatic habitats have long been known to provide suitable habitats for brackish‐water mosquitoes and historically, coastal marshes were considered to support anopheline mosquito populations that were responsible for local malaria transmission. This study surveyed the eight largest managed realignment (MRA) sites in England (Essex and the Humber) for mosquito habitats. The apparent absence of anopheline mosquitoes exploiting aquatic habitats at all of these sites suggests that the risk of malaria associated with MRA sites is currently negligible. However, three of the eight sites supported populations of two nuisance and potential arboviral vector species, Aedes detritus and Aedes caspius. The aquatic habitats that supported mosquitoes resulted from a) specific design aspects of the new sea wall (ballast to mitigate wave action and constructed saline borrow ditches) that could be designed out or managed or b) isolated pools created through silt accretion or expansion of flooded zones to neighbouring pasture. The public health risks and recommendations for management are discussed in this report. This report highlights the need for pro‐active public health impact assessments prior to MRA development in consultation with the Health Protection Agency, as well as the need for a case‐by‐case approach to design and management to mitigate mosquito or mosquito‐borne disease issues now and in the future.  相似文献   

6.
Changes in site occupancy across habitat patches have often been attributed to landscape features in fragmented systems, particularly when considering metapopulations. However, failure to include habitat quality of individual patches can mask the relative importance of local scale features in determining distributional changes. We employed dynamic occupancy modeling to compare the strength of local habitat variables and metrics of landscape patterns as drivers of metapopulation dynamics for a vulnerable, high‐elevation species in a naturally fragmented landscape. Repeat surveys of Bicknell's thrush Catharus bicknelli presence/non‐detection were conducted at 88 sites across Vermont, USA in 2006 and 2007. We used an organism‐based approach, such that at each site we measured important local‐scale habitat characteristics and quantified landscape‐scale features using a predictive habitat model for this species. We performed a principal component analysis on both the local and landscape features to reduce dimensionality. We estimated site occupancy, colonization, and extinction probabilities while accounting for imperfect detection. Univariate, additive, and interaction models of local habitat and landscape context were ranked using AICc scores. Both local and landscape scales were important in determining changes in occupancy patterns. An interaction between scales was detected for occupancy dynamics indicating that the relationship of the parameters to local‐scale habitat conditions can change depending on the landscape context and vice versa. An increase in both landscape‐ and local‐scale habitat quality increased occupancy and colonization probability while decreasing extinction risk. Colonization and extinction were both more strongly influenced by local habitat quality relative to landscape patterns. We also identified clear, qualitative thresholds for landscape‐scale features. Conservation of large habitat patches in high‐cover landscapes will help ensure persistence of Bicknell's thrushes, but only if local scale habitat quality is maintained. Our results highlight the importance of incorporating information beyond landscape characteristics when investigating patch occupancy patterns in metapopulations.  相似文献   

7.
Human modification of the natural environment continues to create habitats in which mosquitoes, vectors of a wide variety of human and animal pathogens, thrive if unabated with an enormous potential to negatively affect public health. Historic examples of these modifications include of impoundments, dams, and irrigation systems that create havens for the mosquitoes that transmit malaria, dengue, and filariasis. Additionally, contemporary deforestation appears to be associated with the expansion of mosquito distributions and the increase in mosquito-borne disease transmission. These observations are not unique to the developing world, as urban sprawl also contributes significantly to mosquito habitats and offers a sanctuary to some vector populations. With foresight and planning, most of these systems can be appropriately managed to control vector populations and pathogen transmission. The key to disease control is developing an understanding of the contribution of human landscape modification to vector-borne pathogen transmission and how a balance may be achieved between human development, public health, and responsible land use.  相似文献   

8.
Changes in agricultural practice are predicted across the UK following agricultural reform driven by government policy. The suitability of agri-environment schemes for many species is currently debated because limited quantitative data are collected. In order to understand the changes to biodiversity due to agri-environment schemes, there is a need for studies to not just compare biodiversity and species composition in and out of agri-environment areas, but to factor in the influence of temporal habitat changes. In this study, we investigate the suitability of an agri-environment initiative to support and enhance a small mammal fauna among pastoral hill farms in mid-Wales. Grazed and ungrazed woodlands, riparian habitats, and broadleaf plantations, were compared for small mammal abundance and diversity following a trapping study. Mammal diversity was similar across habitats, though abundance varied significantly. A principle component analysis identified that mammal abundance clustered into three main habitat groups separated by seral stage (early, mid, late). No relationship between mammal abundance and stock grazing was found. A canonical correspondence analysis confirmed that vegetation structure was important in explaining the distribution of captures of mammal species across the landscape. The results for habitat type, and habitat context, suggest that a mix of vegetation seral stages, reflecting a varied vegetation structure, is important to maintain small mammal diversity and abundance across the study area. Heterogeneity in structural diversity at the landscape scale is important to maintain a variety of ground-dwelling mammal species, and particularly because trends in countryside surveys show that woodlands are skewed towards late seral stages. Habitat heterogeneity can be maintained because the hill farms neighbour each other, and the farmers co-operate as a group to manage the landscape. Habitat diversity is therefore possible. These results help us to advocate, and anticipate, the benefits of groups of farms within a landscape.  相似文献   

9.
Landscape heterogeneity is a major driver of biodiversity in agricultural areas and represents an important parameter in conservation strategies. However, most landscape ecology studies measure gamma diversity of a single habitat type, despite the assessment of multiple habitats at a landscape scale being more appropriate. This study aimed to determine the effects of landscape composition and spatial configuration on life-history trait distribution in carabid beetle and herbaceous plant communities. Here, we assessed the gamma diversity of carabid beetles and plants by sampling three dominant habitats (woody habitats, grasslands and crops) across 20 landscapes in western France. RLQ and Fourth Corner three-table analyses were used to assess the association of dispersal, phenology, reproduction and trophic level traits with landscape characteristics. Landscape composition and configuration were both significant in explaining functional composition. Carabid beetles and plants showed similar response regarding phenology, i.e. open landscapes were associated with earlier breeding species. Carabid beetle dispersal traits exhibited the strongest relationship with landscape structure; for instance, large and apterous species preferentially inhabited woody landscapes, whereas small and macropterous species preferentially inhabited open landscapes. Heavy seeded plant species dominated in intensified agricultural landscapes (high % crops), possibly due to the removal of weeds (which are usually lightweight seeded species). The results of this study emphasise the roles of landscape composition and configuration as ecological filters and the importance of preserving a range of landscape types to maintain functional biodiversity at regional scales.  相似文献   

10.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

11.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

12.
As human population, food consumption, and demand for forest products continue to rise over the next century, the pressures of land‐use change on biodiversity are projected to intensify. In tropical regions, countryside habitats that retain abundant tree cover and structurally complex canopies may complement protected areas by providing suitable habitats and landscape connectivity for a significant portion of the native biota. Species with low dispersal capabilities are among the most at risk of extinction as a consequence of land‐use change. We assessed how the spatial distribution of the brown‐throated sloth (Bradypus variegatus), a model species for a vertebrate with limited dispersal ability, is shaped by differences in habitat structure and landscape patterns of countryside habitats in north‐central Costa Rica using a multi‐scale framework. We quantified the influence of local habitat characteristics and landscape context on sloth occurrence using mixed‐effects logistic regression models. We recorded 27 sloths within countryside habitats and found that both local and landscape factors significantly influenced their spatial distribution. Locally, sloths favored structurally complex habitats, with greater canopy cover and variation in tree height and basal area. At the landscape scale, sloths demonstrated a preference for habitats with high proportions of forest and nearby large tracts of forest. Although mixed‐use areas and tree plantations are not substitutes for protected forests, our results suggest they provide important supplemental habitats for sloths. To promote the conservation and long‐term viability of sloth populations in the tropical countryside, we recommend that land managers retain structurally complex vegetation and large patches of native habitat.  相似文献   

13.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

14.
In a fragmented landscape,transitional zones between neighboring habitats are common,and our understanding of community organizational forces across such habitats is important.Edge studies are numerous,but the majority of them utilize information on species richness and abundance.Abundance and taxonomic diversity,however,provide little information on the functioning and phylogeny of the co-existing species.Combining the evaluation of their functional and phylogenetic relationships,we aimed to assess whether ground beetle assemblages are deterministically or stochastically structured along grassland-forest gradients.Our results showed different community assembly rules on opposite sides of the forest edge.In the grassland,co-occurring species were functionally and phylogenetically not different from the random null model,indicating a random assembly process.Contrary to this,at the forest edge and the interior,co-occurring species showed functional and phylogenetic clustering,thus environmental filtering was the likely process structuring carabid assemblages.Community assembly in the grassland was considerably affected by asymmetrical species flows (spillover)across the forest edge:more forest species penetrated into the grassland than open-habitat and generalist species entered into the forest.This asymmetrical species flow underlines the importance of the filter function of forest edges.As unfavorable,human-induced changes to the structure,composition and characteristics of forest edges may alter their filter function,edges have to be specifically considered during conservation management.  相似文献   

15.
Linking moose habitat selection to limiting factors   总被引:7,自引:0,他引:7  
It has been suggested that patterns of habitat selection of animals across spatial scales should reflect the factors limiting individual fitness in a hierarchical fashion. Animals should thus select habitats that permit avoidance of the most important limiting factor at large spatial scales while the influence of less important factors should only be evident at fine scales. We tested this hypothesis by investigating moose Alces alces habitat selection using GPS telemetry in an area where the main factors limiting moose numbers were likely (in order of decreasing importance) predation risk, food availability and snow. At the landscape scale, we predicted that moose would prefer areas where the likelihood of encountering wolves was low or areas where habitats providing protection from predation were dominant. At the home‐range scale, we predicted that moose selection would be driven by food availability and snow depth. Wolf territories were delineated using telemetry locations and the study area was divided into 3 sectors that differed in terms of annual snowfall. Vegetation surveys yielded 6 habitat categories that differed with respect to food availability, and shelter from predation or snow. Our results broadly supported the hypothesis because moose reacted to several factors at each scale. At the landscape scale, moose were spatially segregated from wolves by avoiding areas receiving the lowest snowfall, but they also preferentially established their home range in areas where shelter from snow bordered habitat types providing abundant food. At the home‐range scale, moose also traded off food availability with avoidance of deep snow and predation risk. During winter, moose increased use of stands providing shelter from snow along edges with stands providing abundant food. Habitat selection patterns of females with calves differed from that of solitary moose, the former being associated primarily with habitats providing protection from predation. Animals should attempt to minimize detrimental effects of the main limiting factors when possible at the large scale. However, when the risk associated with several potential limiting factors varies with scale, we should expect animals to make trade‐offs among these.  相似文献   

16.
Aim This study addresses how species resolve environmental differences into biological habitats at multiple, interacting spatial scales. How do patterns of local habitat use change along an elevation gradient? How do patterns of local habitat partitioning interact with partitioning at a landscape scale? Location Northern and southern Lesser Antilles islands, West Indies. Methods We document how Anolis Daudin, 1802 lizards partition habitat locally at sites along a landscape‐scale elevation gradient. We examine habitat partitioning both with and without interspecific interactions in the predominately flat northern Lesser Antilles islands and in the more mountainous southern islands. Results Anoles partition local habitat along perch‐height and microclimate axes. Northern‐group sympatric anoles partition local habitat by perch height and have overlapping distributions at the landscape scale. Southern‐group sympatric anoles partition local habitat by microclimate and specialize in particular habitats at the landscape scale. In both the northern and southern groups, species use different perch heights and microclimates only in areas of species overlap along the elevation gradient. Main conclusions We demonstrate the interaction between local‐ and landscape‐scale habitat partitioning. In the case of microclimate partitioning, the interaction results from the use of thermal physiology to partition habitat at multiple scales. This interaction prompts the question of whether habitat partitioning developed ‘local‐out’ or ‘landscape‐in’. We pose this dichotomy and present a framework for its resolution.  相似文献   

17.
Emerging infectious diseases are considered to be a growing threat to human and wildlife health. Such diseases might be facilitated by anthropogenic land-use changes that cause novel juxtapositions of different habitats and species and result in new interchanges of vectors, diseases, and hosts. To search for such effects in tropical Australia, we sampled mosquito populations across anthropogenic disturbance gradients of grassland, artificial rainforest edge, and rainforest interior. From >15,000 captured mosquitoes, we identified 26 species and eight genera. Surprisingly, there was no significant difference in community composition or species richness between forest edges and grasslands, but both differed significantly from rainforest interiors. Mosquito species richness was elevated in grasslands relative to the rainforest habitats. Seven species were unique to grasslands and edges, with another 13 found across all habitats. Among the three most abundant species, Culex annulirostris occurred in all habitat types, whereas Verrallina lineata and Cx. pullus were more abundant in forest interiors. Our findings suggest that the creation of anthropogenic grasslands adjacent to rainforests may increase the susceptibility of species in both habitats to transmission of novel diseases via observable changes and mixing of the vector community on rainforest edges.  相似文献   

18.
Agricultural land use commonly leaves a persistent signature on the ecosystems that develop after agricultural abandonment. This agricultural legacy limits the biodiversity supported by post‐agricultural habitats compared to remnant habitats that have never been used for agriculture. In particular, beta diversity (variation in community composition across space) at both large and small spatial scales can differ between post‐agricultural and remnant habitats, but we do not understand the mechanisms driving these differences. We surveyed plant communities at 29 pairs of post‐agricultural and remnant longleaf pine woodlands (58 total woodlands) to test for patterns consistent with two hypothesized mechanisms for why post‐agricultural ecosystems support altered beta diversity. 1) Post‐agricultural sites support different levels of underlying environmental heterogeneity than remnants. 2) Establishment of species associated with remnant habitats into post‐ agricultural woodlands is limited by dispersal and/or environmental conditions. We found no support for the environmental heterogeneity hypothesis and strong support for the idea that species establishment limits reassembling communities. Our results revealed a novel and important nuance to the establishment limitation hypothesis: spatially constrained, but not completely prevented, re‐establishment of remnant‐associated species in post‐agricultural woodlands increased within‐site beta diversity, contrary to results at larger among‐site (landscape) scales. Our use of a powerful paired‐site design permits these insights into how agriculture and abandonment affect beta diversity at two spatial scales, highlighting the prominent influence of edges even a half century after agricultural abandonment. The importance of constrained species establishment during ecosystem recovery, and its scale‐dependent effect, could provide valuable guidance to enhance the utility of post‐agricultural habitats for biodiversity conservation.  相似文献   

19.
Anthropogenic habitat disturbance can have profound effects on multiple components of forest biotas including pollinator assemblages. We assessed the effect of small-scale disturbance on local richness, abundance, diversity and evenness of insect pollinator fauna; and how habitat disturbance affected species turnover across the landscape and overall diversity along a precipitation gradient in NW Patagonia (Argentina). We evaluated the effect of disturbance on overall pollinator fauna and then separately for bees (i.e. Apoidea) and non-bee pollinators. Locally, disturbed habitats had significantly higher pollinator species richness and abundances than undisturbed habitats for the whole pollinator assemblage, but not for bees or non-bees separately. However, significant differences in species richness between habitats vanished after accounting for differences in abundance between habitat types. At a local scale Shannon–Weaver diversity and evenness did not vary with disturbance. A β diversity index indicated that, across forest types, species turnover was lower between disturbed habitats than between undisturbed habitats. In addition, rarefaction curves showed that disturbed habitats as a whole accumulated fewer species than undisturbed habitats at equivalent sample sizes. We concluded that small patches of disturbed habitat have a negligible effect on local pollinator diversity; however, habitat disturbance reduced β diversity through a homogenization of the pollinator fauna (in particular of bees) across the landscape.  相似文献   

20.
We engaged in field studies of native mosquitoes in a Cambridgeshire Fen, investigating a) the habitat specificity and seasonal dynamics of our native fauna in an intensively managed wetland, b) the impact of water‐level and ditch management, and c) their colonization of an arable reversion to flooded grassland wetland expansion project. Studies from April to October, 2010 collected 14,000 adult mosquitoes (15 species) over 292 trap‐nights and ~4,000 pre‐imaginal mosquitoes (11 species). Open floodwater species (Aedes caspius and Aedes cinereus, 43.3%) and wet woodland species (Aedes cantans/annulipes and Aedes rusticus, 32.4%) dominated, highlighting the major impact of seasonal water‐level management on mosquito populations in an intensively managed wetland. In permanent habitats, managing marginal ditch vegetation and ditch drying significantly affect densities of pre‐imaginal anophelines and culicines, respectively. This study presents the first UK field evidence of the implications of wetland expansion through arable reversion on mosquito colonization. Understanding the heterogeneity of mosquito diversity, phenology, and abundance in intensively managed UK wetlands will be crucial to mitigating nuisance and vector species through habitat management and biocidal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号