首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions between the root‐knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes were examined when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We tested the hypothesis that, defence‐recessive genotypes tend to allocate ‘extra’ carbon (relative to nitrogen) to growth under elevated CO2, whereas defence‐dominated genotypes allocate extra carbon to defence, and thereby increases the defence against nematodes. For all three genotypes, elevated CO2 increased height, biomass, and root and leaf total non‐structural carbohydrates (TNC):N ratio, and decreased amino acids and proteins in leaves. The activity of anti‐oxidant enzymes (superoxide dismutase and catalase) was enhanced by nematode infection in defence‐recessive genotypes. Furthermore, elevated CO2 and nematode infection did not qualitatively change the volatile organic compounds (VOC) emitted from plants. Elevated CO2 increased the VOC emission rate only for defence‐dominated genotypes that were not infected with nematodes. Elevated CO2 increased the number of nematode‐induced galls on defence‐dominated genotypes but not on wild‐types or defence‐recessive genotypes roots. Our results suggest that CO2 enrichment may not only increase plant C : N ratio but can disrupt the allocation of plant resources between growth and defence in some genetically modified plants and thereby reduce their resistance to nematodes.  相似文献   

2.
3.
Plant-parasitic nematodes are a major pest of many plant species and cause global economic loss. A phytocystatin gene, Colocasia esculenta cysteine proteinase inhibitor (CeCPI), isolated from a local taro Kaosiang No. 1, and driven by a CaMV35S promoter was delivered into CLN2468D, a heat-tolerant cultivar of tomato (Solanum lycopersicum). When infected with Meloidogyne incognita, one of root-knot nematode (RKN) species, transgenic T1 lines overexpressing CeCPI suppressed gall formation as evidenced by a pronounced reduction in gall numbers. In comparison with wild-type plants, a much lower proportion of female nematodes without growth retardation was observed in transgenic plants. A decrease of RKN egg mass in transgenic plants indicated seriously impaired fecundity. Overexpression of CeCPI in transgenic tomato has inhibitory functions not only in the early RKN infection stage but also in the production of offspring, which may result from intervention in sex determination.  相似文献   

4.
The root-knot nematode Meloidogyne incognita is one of the most damaging plant parasitic nematodes in the world. In this study, the effect of cystatin from Amaranthus hypochondriacus (AhCPI) as a potential control agent for M. incognita was explored. In vitro bioassays demonstrated that AhCPI affects the growth and development of eggs and the infectivity of juveniles (J2) of M. incognita, such as mortality and slower development, showing characteristic tissue damage. Mortality levels were quantified by Probit analysis, estimating LC50s of 1.4 mg/mL for eggs and 0.028 mg/mL for J2. In planta bioassays showed that infected tomato seedlings treated with 0.056 mg/mL of AhCPI showed a 60% reduction in the number of galls, as compared with untreated J2-inoculated seedlings. Under greenhouse conditions, three applications of 10 mL of AhCPI (1.4 mg/mL) in the soil around the stem of M. incognita-infected tomato plants, reduced the number of galls by 93 ± 8%, as compared to the control M. incognita-infected plants. The application of AhCPI to the infected plants increased the yield (10.7%) of harvested tomato fruits, as compared to infected plants. These results show the potential of AhCPI for the control of M. incognita in tomato plants.  相似文献   

5.
梁朋  陈振德  罗庆熙 《生态学报》2012,32(7):2294-2302
采用盆栽人工接种方法,对番茄嫁接苗进行了抗性评价,研究了番茄嫁接苗叶片中抗氧化酶活性和活性氧代谢的动态变化。结果表明,接种南方根结线虫(J2)后,砧木嫁接苗表现为高抗,自根嫁接苗为高感。通过嫁接换根,与自根嫁接苗相比,砧木嫁接苗明显提高了接穗叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,降低了超氧阴离子(O.2-)产生速率以及过氧化氢(H2O2)和丙二醛(MDA)含量。表明番茄植株体内的活性氧水平和抗氧化酶活性的高低与其抗根结线虫的能力密切相关,较低的活性氧水平和较高的抗氧化酶活性有利于减轻对膜系统的伤害,提高番茄植株的抗根结线虫能力。  相似文献   

6.
7.
The effects of chemical and microbial elicitors such as β-aminobutyric acid (BABA), Salicylic acid (SA), and Pseudomonas fluorecens CHAO on hydrogen peroxide generation and activity of the enzymes related to its metabolism, i.e., superoxide dismutase (SOD), guaiacol peroxidase (GPOX), and catalase (CAT) were investigated in tomato roots infected with root-knot nematode (Meloidogyne javanica). Results of this study show that treating the tomato seedlings with the above elicitors significantly reduces the nematode infection level. Among the tested elicitors, BABA has reduced the nematode galls, number of egg masses per plant and number of eggs per individual egg mass more than the others. Additionally, the amount of H2O2, a product of oxidative stress, SOD and GPOX specific activities were significantly increased in the elicitor treated plants in comparison to control. Our observation shows that BABA also increases the H2O2 accumulation and the SOD and GPOX activities more as compared with the other tested elicitors. Such increases have occurred in two phases and maximum levels of them were observed at 5 days after treatment. In contrast with the increase in SOD and GPOX activities, the CAT activity doesnot show any significant increase in treated plants as compared with the control and other tested elicitors. It can be concluded that BABA, SA, and Pseudomonas fluorescens CHAO induce oxidative stress in tomato roots through generation of reactive oxygen species (ROS) and the enzymes related to their metabolism.  相似文献   

8.
Cyst and root‐knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root‐knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN.  相似文献   

9.
The results of experiment clearly reveal that cadmium inhibited root penetration by the second stage juveniles (J2) of Meloidogyne incognita which subsequently affected the development of root galls in tomato. The heavy metal was highly injurious to tomato plants at all the concentrations tested for (7.5, 15.0, 30.0 and 60.0?ppm). The inhibitory effect on plant growth and other parameters (fresh and dry weight of plant, chlorophyll content of leaves, water absorption capability of roots) significantly increased with an increase in the concentration of the metal. It was further increased in the presence of the nematode.  相似文献   

10.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

11.
Bacterial wilt, caused by Ralstonia solanacearum, is one of the most serious diseases of tomato (Solanum lycopersicum). Concomitant infection of R. solanacearum and root‐knot nematode Meloidogyne incognita increases the severity of bacterial wilt in tomato, but the role of this nematode in disease complexes involving bacterial pathogens is not completely elucidated. Although root wounding by root‐knot nematode infection seems to play an important role, it might not entirely explain the increased susceptibility of plants to R. solanacearum. In the present study, green fluorescent protein (GFP)‐labelled R. solanacearum distribution was observed in the root systems of the tomato cultivar Momotaro preinoculated with root‐knot nematode or mock‐inoculated with tap water. Fluorescence microscopy revealed that GFP‐labelled R. solanacearum mainly colonized root‐knot nematode galls, and little or no green fluorescence was observed in nematode‐uninfected roots. These results suggest that the gall induced by the nematode is a suitable location for the growth of R. solanacearum. Thus, it is crucial to control both R. solanacearum and root‐knot nematode in tomato production fields to reduce bacterial wilt disease incidence and effects.  相似文献   

12.
The present review summarizes experimental data revealed while studying the mechanism of the adaptogenic effect of furostanol glycosides (FG) extracted from Dioscorea deltoidea Wall cell culture under the conditions of biotic stress in tomato plants Lycopersicon esculenium Mill. induced by the gall nematode Meloidogyne incognita Kofoid et White. Comparison of changes in isoprene content (phytosterines, tomatin, and carotenoids) and in the rate of oxidative processes in the leaves and roots of intact and treated plants evidence that FG cause nonspecific defense reactions resulting in the formation of systemic acquired resistance. This formation is presented by the enhancement in photosynthetic apparatus pigment fund, pigments of the violaxanthin cycle in particular, by activation of processes related to POL, and by increase in peroxidase activity—enzyme of antioxidant protection.  相似文献   

13.
14.
The study of plant parasitic nematodes such as Meloidogyne spp. and their interactions with phytopathogenic bacteria remains underexplored. One of the challenges towards establishing such interactions is the dependence on symptom development as a measure of interaction. In this study, mCherry was employed as a reporter protein to investigate the interaction between the soft rot Enterobacteriaceae (SRE) Pectobacterium carotovorum subsp. brasiliensis (Pcb) and root‐knot nematode (Mincognita). Pectobacterium carotovorum subsp. brasiliensis was transformed with pMP7604 generating Pcb_mCherry strain. This strain was shown to attach to the surface coat of M.incognita J2 at the optimum temperature of 28°C. This suggests that RKN juveniles may play a role in disseminating Pcb in soils that are heavily infested with Pcb. The presence of RKN juveniles was shown to play a role in introducing Pcb_mCherry into potato tubers potentially acting as a source of latent tuber infections.

Significance and Impact of the Study

This study uses fluorescent reporter protein tagging as a tool to demonstrate the interaction between root‐knot nematode (Meloidogyne incognita) and the soft rot Enterobacteriacea (Pectobacterium carotovorum subsp. brasiliensis). Introduction of Pectobacterium through wounds generated by second‐stage juveniles (J2) into potato tubers was demonstrated. These results suggest that RKN juveniles can facilitate latent infection of potato tubers in the soil. These findings have important implications in the management of RKN and SRE in seed potato production. Furthermore, this tool can be used to study other nematode–bacteria interactions that have not been previously studied.  相似文献   

15.
Plant growth-promoting rhizobacterium, Pseudomonas fluorescens strain BICC602 suppresses root-knot nematode (Meloidogyne incognita) by enhancing defence mechanism leading to induced systemic resistance in cowpea (Vigna unguiculata) cv. L.Walp. and tomato (Solanum lycopersicum) cv. Pusa Ruby. In cowpea, the soil treatment proved more effective than foliar spray on root galling and eggs in roots. However, which factors are necessary in the induction of resistance response in plants against nematodes by BICC602 is not yet known. Salicylic acid (SA) production by some bacteria acts as endogenous signal for the activation of certain plant defence responses. In a split-root trial with tomato as a host plant and M. incognita as challenging parasite, BICC602 induces systemic resistance in tomato plants. Based on the results, it is assumed that P. fluorescens-induced resistance against M. incognita in cowpea and tomato is made either through SA-dependent or SA-independent transduction pathway.  相似文献   

16.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

17.
  • Tropospheric ozone (O3) is considered a major air pollutant having negative effects on plant growth and productivity. Background concentrations are expected to rise in several regions of the world in the next 50 years, affecting plant responses to diseases, thus requiring new management strategies for food production.
  • The effects of elevated O3 on the severity of a bacterial disease, and the effectiveness of a chemical defence inducer, were examined in two cultivars of tomato, Roma and Moneymaker, which present different tolerance to this pollutant. The two cultivars differ in their ability to produce and accumulate reactive oxygen species (ROS) in leaf tissues. Tomato plants were challenged with a strain of Xanthomonas vesicatoria, Xv9, which is pathogenic on tomato.
  • Ozone consistently increased severity of the disease by over 40% in both cultivars. In the more tolerant cultivar, O3 pollution increased disease intensity, even after applying a commercially available product to enhance resistance (acibenzolar‐S‐methyl, BTH). In the more susceptible cultivar, level of disease attained depended on the oxidative balance that resulted from other stress factors.
  • The antioxidant capacity of the plant at the time of infection was relevant for controlling development of the disease. Our results suggest that development of O3 tolerance in commercial crops might impose a penalty cost in terms of disease management under projected higher O3 concentrations.
  相似文献   

18.
Tomato (Solanum lycopersicum L.) is among the most valuable agricultural products, but Meloidogyne spp. (root-knot nematode) infestations result in serious crop losses. In tomato, resistance to root-knot nematodes is controlled by the gene Mi-1, but heat stress interferes with Mi-1-associated resistance. Inconsistent results in published field and greenhouse experiments led us to test the effect of short-term midday heat stress on tomato susceptibility to Meloidogyne incognita race 1. Under controlled day/night temperatures of 25°C/21°C, ‘Amelia’, which was verified as possessing the Mi-1 gene, was deemed resistant (4.1 ± 0.4 galls/plant) and Rutgers, which does not possess the Mi-1 gene, was susceptible (132 ± 9.9 galls/plant) to M. incognita infection. Exposure to a single 3 hr heat spike of 35°C was sufficient to increase the susceptibility of ‘Amelia’ but did not affect Rutgers. Despite this change in resistance, Mi-1 gene expression was not affected by heat treatment, or nematode infection. The heat-induced breakdown of Mi-1 resistance in ‘Amelia’ did recover with time regardless of additional heat exposures and M. incognita infection. These findings would aid in the development of management strategies to protect the tomato crop at times of heightened M. incognita susceptibility.  相似文献   

19.
The effectiveness of soil fumigation with 50, 100 and 200 µL kg?1 soil of essential oils (EOs) from the plant species Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Pelargonium asperum and Ruta graveolens was assessed against the root‐knot nematode Meloidogyne incognita on potted tomato. Plant growth parameters and number of galls, nematode eggs and juveniles on tomato roots were evaluated after two months of maintenance of the treated plants at 25°C in greenhouse. EOs of E. globulus and P. asperum significantly reduced nematode multiplication and gall formation on tomato roots at all the tested rates, whereas the EOs of E. citriodora, M. piperita and R. graveolens were more suppressive at levels greater than 50 µL kg?1 soil. Biofumigation with EOs of E. globulus and P. asperum resulted also in the largest increase of tomato plant top and root biomass. The five samples of EOs had a different chemical composition as determined by GC and GC‐MS. Structure–activity relationship based on the main constituents of the tested EOs and their nematicidal effect on M. incognita is discussed.  相似文献   

20.
Abstract

A pot trial was conducted to estimate the role of Trichoderma harzianum alone or in combination with two organic substances, potassium humate and chitosan in controlling Meloidogyne incognita on tomato. All treatments caused greater decreases in parameters of M. incognita in comparison to the control treatment (nematode only) and this led to noticeable enhancements in growth and yield of tomato. The lowest numbers of eggmasses, eggs/eggmass, galls/root, females/root, and second stage juveniles/250?g soil were recorded due to the combination of T. harzianum (1010 spore/ml) with chitosan and potassium humate after 120 days from the transplanting of tomato seedlings. Also, this treatment showed the best promotion for all tomato parameters (lengths and weights of shoots and roots, and productivity). So, mixing chitosan, potassium and T. harzianum is highly recommended to be used as an effective bio-nematicide against M. incognita on tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号