首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
DNA methylation is recognized as one of several epigenetic regulators of gene expression and as potential driver of carcinogenesis through gene-silencing of tumor suppressors and activation of oncogenes. However, abnormal methylation, even of promoter regions, does not necessarily alter gene expression levels, especially if the gene is already silenced, leaving the exact mechanisms of methylation unanswered. Using a large cohort of matching DNA methylation and gene expression samples of colorectal cancer (CRC; n = 77) and normal adjacent mucosa tissues (n = 108), we investigated the regulatory role of methylation on gene expression. We show that on a subset of genes enriched in common cancer pathways, methylation is significantly associated with gene regulation through gene-specific mechanisms. We built two classification models to infer gene regulation in CRC from methylation differences of tumor and normal tissues, taking into account both gene-silencing and gene-activation effects through hyper- and hypo-methylation of CpGs. The classification models result in high prediction performances in both training and independent CRC testing cohorts (0.92<AUC<0.97) as well as in individual patient data (average AUC = 0.82), suggesting a robust interplay between methylation and gene regulation. Validation analysis in other cancerous tissues resulted in lower prediction performances (0.69<AUC<0.90); however, it identified genes that share robust dependencies across cancerous tissues. In conclusion, we present a robust classification approach that predicts the gene-specific regulation through DNA methylation in CRC tissues with possible transition to different cancer entities. Furthermore, we present HMGA1 as consistently associated with methylation across cancers, suggesting a potential candidate for DNA methylation targeting cancer therapy.  相似文献   

4.
DNA methylation abnormalities are regarded as critical event for cancer initiation and development. Tumor-associated genes encompassing aberrant DNA methylation alterations at specific locus are correlated with chromatin remodeling and dysregulation of gene expression in various malignancies. Thus, technologies designed to manipulate DNA methylation at specific loci of genome are necessary for the functional study and therapeutic application in the context of cancer management. Traditionally, the method for DNA methylation modifications demonstrates an unspecific feature, adversely causing global-genome epigenetic alterations and confusing the function of desired gene. Novel approaches for targeted DNA methylation regulation have a great advantage of manipulating gene epigenetic alterations in a more specific and efficient method. In this review, we described different targeting DNA methylation techniques, including both their advantages and limitations. Through a comprehensive understanding of these targeting tools, we hope to open a new perspective for cancer treatment.  相似文献   

5.
6.
Germline mutations of BRCA1 predispose women to breast and ovarian cancers. However, the downstream mediators of BRCA1 function in tumor suppression remain elusive. We found that human BRCA1-associated breast cancers have lower levels of SIRT1 than their normal controls. We further demonstrated that mammary tumors from Brca1 mutant mice have low levels of Sirt1 and high levels of Survivin, which is reversed by induced expression of Brca1. BRCA1 binds to the SIRT1 promoter and increases SIRT1 expression, which in turn inhibits Survivin by changing the epigenetic modification of histone H3. Absence of SIRT1 blocks the regulation of Survivin by BRCA1. Furthermore, we demonstrated that activation of Sirt1 and inhibition of Survivin expression by resveratrol elicit a more profound inhibitory effect on Brca1 mutant cancer cells than on Brca1-wild-type cancer cells both in vitro and in vivo. These findings suggest that resveratrol treatment serves as an excellent strategy for targeted therapy for BRCA1-associated breast cancer.  相似文献   

7.
8.
BackgroundEpigenetic alterations including DNA methylation and histone modifications are the key factors in the differentiation of stem cells into different tissue subtypes. The generation of cancer stem cells (CSCs) in the process of carcinogenesis may also involve similar kind of epigenetic reprogramming where, in contrast, it leads to the loss of expression of genes specific to the differentiated state and regaining of stem cell-specific characteristics. The most important predicament with treatment of cancers includes the non-responsive quiescent CSC.Scope of reviewThe distinctive capabilities of the CSCs make cancer treatment even more difficult as this population of cells tends to remain quiescent for longer intervals and then gets reactivated leading to tumor relapse. Therefore, the current review is aimed to focus on recent advances in understanding the relation of epigenetic reprogramming to the generation, self-renewal and proliferation of CSCs.Major conclusionCSC-targeted therapeutic approaches would improve the chances of patient survival by reducing the frequency of tumor relapse. Differentiation therapy is an emerging therapeutic approach in which the CSCs are induced to differentiate from their quiescent state to a mature differentiated form, through activation of differentiation-related signalling pathways, miRNA-mediated alteration and epigenetic differentiation therapy. Thus, understanding the origin of CSC and their epigenetic regulation is crucial to develop treatment strategy against not only for the heterogeneous population of cancer cells but also to CSCs.General significanceCharacterizing the epigenetic marks of CSCs and the associated signalling cascades might help in developing therapeutic strategies against chemo-resistant cancers.  相似文献   

9.
Primary malignant brain tumors are a major cause of morbidity and mortality in both adults and children, with a dismal prognosis despite multimodal therapeutic approaches. In the last years, a specific subpopulation of cells within the tumor bulk, named cancer stem cells(CSCs) or tumor-initiating cells, have been identified in brain tumors as responsible for cancer growth and disease progression. Stemness features of tumor cells strongly affect treatment response, leading to the escape from conventional therapeutic approaches and subsequently causing tumor relapse. Recent research efforts have focused at identifying new therapeutic strategies capable of specifically targeting CSCs in cancers by taking into consideration their complex nature. Aberrant epigenetic machinery plays a key role in the genesis and progression of brain tumors as well as inducing CSC reprogramming and preserving CSC characteristics. Thus, reverting the cancer epigenome can be considered a promising therapeutic strategy. Three main epigenetic mechanisms have been described: DNA methylation, histone modifications, and non-coding RNA, particularly micro RNAs. Each of these mechanisms has been proven to be targetable by chemical compounds, known as epigeneticbased drugs or epidrugs, that specifically target epigenetic marks. We review here recent advances in the study of epigenetic modulators promoting and sustaining brain tumor stem-like cells. We focus on their potential role in cancer therapy.  相似文献   

10.
11.
12.
Epigenetic gene regulation contributes, together with genetic alterations, to cancer development and progression. In contrast to genetic disorders, the possibility of reversing epigenetic alterations has provided original targets for therapeutic application. In the last years, work has been focused on the pharmacological restoration of epigenetic regulation balance using epidrugs which yield hopes for novel strategy in cancer therapy. Histone acetylation and DNA methylation are epigenetic modifications which have been closely linked to the pathology of human cancers, and inhibitors of both enzyme classes for clinical use are at hands. Novel findings accumulated during the last years both in chemistry and biomedical applications give rise to new targeted treatments against cancer. Since their links with pathogenesis and progression of cancer were recognized, histone methyltransferases emerge as promising therapeutic targets in cancer treatment.  相似文献   

13.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

14.
Epidemiologic and experimental evidences support the concept that inflammation promotes the development and progression of cancers. Interleukins (ILs) regulate the expression of several molecules and signaling pathways involved in inflammation. High expression of some ILs in the tumor microenvironment has been associated with a more virulent tumor phenotype. To examine the role of IL-1β, IL-6, and IL-8 in non-small cell lung cancer, we measured mRNA levels and promoter DNA methylation in a panel of cultured human lung cells (n = 23) and in matched pair lung tumor versus adjacent non-tumorous tissues (n = 24). We found that lung cancer cells or tissues had significantly different DNA methylation and mRNA levels than normal human bronchial epithelial cells or adjacent non-tumorous tissues, respectively. High DNA methylation of ILs promoters in lung cancer cells or tissues was associated with low mRNA levels. We found an inverse correlation between DNA methylation of IL1B, IL6, and IL8 gene promoters and their corresponding mRNA levels, such inverse correlation was more significant for IL1B (i.e., all cancer cell lines used in this study had a hypermethylated IL1B promoter which was associated with silencing of the gene). Our results underline for the first time the role of epigenetic modifications in the regulation of the expression of key cytokines involved in the inflammatory response during lung cancer development.  相似文献   

15.
《Epigenetics》2013,8(3):346-350
Recently, Dclk1 expression was identified to be an intestinal cancer stem cell specific biomarker in mouse models, implicating a potential role for targeting the DCLK1-postive cancer cells as a treatment for colorectal cancer. Using quantitative methylation specific PCR (qMSP) we here demonstrated that the DCLK1 promoter is hypermethylated in the vast majority of colorectal cancers (134/164; 82%), with no methylation in the normal mucosa samples (0/106). We further showed by Affymetrix exon arrays that DCLK1 is significantly downregulated in human colorectal cancer (n = 125) compared with normal colonic mucosa (n = 15), which was further confirmed by real-time RT-PCR of a subgroup of the samples. Additionally, a significant negative correlation was observed between methylation and DCLK1 expression in 74 cancer cell lines derived from 15 different tissues, and gene expression increased significantly after epigenetic drug treatment of initially methylated cancer cell lines. These findings underscore the potential of DCLK1 as a colorectal cancer biomarker for early detection, but may also have clinical implications regarding the previously proposed therapy toward DCLK1-positive cancer cells. This therapy would at best affect the cancer stem cell population, but will, based on the present results, not be efficient to treat the bulk of the tumor.  相似文献   

16.
17.
Recently, Dclk1 expression was identified to be an intestinal cancer stem cell specific biomarker in mouse models, implicating a potential role for targeting the DCLK1-postive cancer cells as a treatment for colorectal cancer. Using quantitative methylation specific PCR (qMSP) we here demonstrated that the DCLK1 promoter is hypermethylated in the vast majority of colorectal cancers (134/164; 82%), with no methylation in the normal mucosa samples (0/106). We further showed by Affymetrix exon arrays that DCLK1 is significantly downregulated in human colorectal cancer (n = 125) compared with normal colonic mucosa (n = 15), which was further confirmed by real-time RT-PCR of a subgroup of the samples. Additionally, a significant negative correlation was observed between methylation and DCLK1 expression in 74 cancer cell lines derived from 15 different tissues, and gene expression increased significantly after epigenetic drug treatment of initially methylated cancer cell lines. These findings underscore the potential of DCLK1 as a colorectal cancer biomarker for early detection, but may also have clinical implications regarding the previously proposed therapy toward DCLK1-positive cancer cells. This therapy would at best affect the cancer stem cell population, but will, based on the present results, not be efficient to treat the bulk of the tumor.  相似文献   

18.
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

19.
徐安利  张素芹  陈琪  杨瑛  侯建青 《生物磁学》2014,(23):4574-4577
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

20.
Park JJ  Kang JK  Hong S  Ryu ES  Kim JI  Lee JH  Seo JS 《Gene》2008,407(1-2):139-147
Copy number changes and DNA methylation alterations are crucial to gene regulation in mammals. Recently, a number of microarray studies have been based on copy number and DNA methylation alterations in order to find clinical biomarkers of carcinogenesis. In this study, we attempted to combine profiles of copy number and methylation patterns in four human cancer cell lines using BAC microarray-based approaches and we detected several clinically important genes which showed genetic and epigenetic relationships. Within the clones analyzed, many contained cancer-related genes involved in cell cycle regulation, cell division, signal transduction, tumor necrosis, cell differentiation, and cell proliferation. One clone included the FHIT gene, a well-known tumor suppressor gene involved in various human cancers. Our combined profiling techniques may provide a method by which to find new clinicopathologic cancer biomarkers, and support the idea that systematic characterization of the genetic and epigenetic events in cancers may rapidly become a reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号