首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

3.
In order to gain insight into the steroid hormone-induced differential expression of genes for several rate-limiting enzymes of various metabolic pathways during differentiation, growth, adulthood, and senescence in rats, nuclear RNA polymerase of the cerebellum and cerebral hemispheres were studied. The level of this enzyme in both the tissues was highest in the immature rats and decreased significantly thereafter with increasing age. Ovariectomy decreased, and estradiol administration increased significantly the activity of this enzyme in both cerebellum and cerebral hemispheres of immature, young-adult, adult, and late-adult rats but not of senescent rats. However, the effects of these treatments were highest in the young-adult rats.  相似文献   

4.
The activities and induction patterns of the isoenzymes of alanine aminotransferase (AAT) of the cerebral hemispheres and cerebellum of rats of various ages were studied. The activities of both the soluble (s-) and mitochondrial (m-) isoenzymes of ATT of the cerebral hemispheres and cerebellum were highest in the immature rat and decreased significantly thereafter with increasing age. Adrenalectomy decreased, and hydrocortisone administration increased significantly, the activity of s-AAT in both cerebral hemispheres and cerebellum of immature, adult, and senescent rats. However, these treatments resulted in significant changes in the activity of m-AAT in both tissues of the immature rat only. The hormone-mediated induction of these isoenzymes was actinomycin D-sensitive.  相似文献   

5.
Abstract

Acetylcholinesterase (AChE) activity of the adenohypophysis, cerebellum, cerebral cortex, hypothalamus, amygdala, hippocampus, midbrain, pons, medulla oblongata and caudate nucleus was determined by a spectro‐photometric method in adult, male rats adapted toan LD 12:12cycle. Results of the study show that AChE activity is highest during the light phase and lowest during the dark phase of the cycle in all the brain areas studied except the adenohypophysis, cerebellum, hippocampus and hypothalamus. These findings expand earlier observations on the circadian variation in rat brain AChE activity and suggests a relationship with reported circadian variation in the acetylcholine levels of rat brain.  相似文献   

6.
The induction of pyruvate kinase (ATP: pyruvate 2-O phosphotransferase, EC 2.7.1.40; PK) by estradiol or testosterone in the cerebral hemisphere of male and female rats of different ages was studied. There is a marked decrease in the activity of the enzyme of normal male and female rats with increasing age. Orchiectomy decreases its activity in young and old rats, but not in adult rats. Ovariectomy decreases its activity significantly in all the ages. Estradiol (50μg/100g body wt.) induces its activity in castrated male and female rats, but its effect is greater in female rats. A higher dose of estradiol (100μg/100g body wt.) has age- and sex-dependent induction. Testosterone (50 and 100μg/100g body wt.) has very little effect on its activity in castrated male and female rats of the three ages. The Km values for PEP and ADP, and the Kt values for ATP and l -phenylalanine for the partially purified enzyme of the cerebral hemisphere of normal young and old rats are the same. Preincubation of the enzyme with l -alanine reverses the l -phenylalanine induced inhibition. The concentration of l -alanine required for this effect is the same for both ages. The concentration of Mg2+ required to reverse the inhibitory effect of ATP is the same for young and old rats. Estradiol and testosterone added directly to the incubation mixture do not have any effect on the enzyme activity. These data suggest that the nature of the enzyme molecule does not change with age, but that its induction properties change with age.  相似文献   

7.
Poly(ADP-ribose) polymerase (PARP) is a conserved enzyme involved in the regulation of DNA repair and genome stability. The role of PARP during aging is not well known. In this study PARP activity was investigated in nuclear fractions from hippocampus, cerebellum, and cerebral cortex of adult (4 months), old adult (14 months) and aged (24-27 months) rats. Concomitantly, the free radical evoked lipid peroxidation was estimated as thiobarbituric acid reactive substances (TBARS). The specific activity of PARP in adult brain was about 25, 21 and 16 pmol/mg protein per min in hippocampus, cerebellum and cerebral cortex, respectively. The enzyme activity was higher in all investigated parts of the brain of old adults. In aged animals PARP activity was lower in hippocampus by about 50%, and was unchanged in cerebral cortex and in cerebellum comparing to adult rats. The concentration of TBARS was the same in all parts of the brain and remained unchanged during aging. There is no direct correlation between PARP activity and free radical evoked lipid peroxidation during brain aging. The lowered enzyme activity in aged hippocampus may decrease DNA repair capacity which subsequently may be responsible for the higher vulnerability of hippocampal neurons to different toxic insults.  相似文献   

8.
Abstract: Rats were treated chronically with manganese chloride from conception onward for a period of over 2 years in order to study the effects of manganese and aging on the activities of glutamic acid decarboxylase (GAD), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) in hypothalamus, cerebellum, pons and medulla, striatum, midbrain, and cerebral cortex (which included the hippocampus). Manganese-treated 2-month-old and 24- to 28-month-old rats and age-matched controls were studied. In control rats during aging the activities of GAD decreased in hypothalamus (19%), pons and medulla (28%), and midbrain (22%) whereas the activities of AChE decreased in all regions (20–48%), particularly in the striatum (44–48%). Changes in ChAT activities in aging were observed only in one region—a decrease (23%) in the striatum. Life-long treatment with manganese appeared to abolish partially the decreases in aging in AChE activities in hypothalamus, cerebellum and striatum, and striatal ChAT activity. Manganese treatment also seemed to abolish the age-related decreases in GAD activities, since GAD activities in various brain regions of manganese-treated senescent rats were not significantly different from those of control young rats. These results are discussed in relation to other metabolic changes associated with aging and manganese toxicity.  相似文献   

9.
The specific activities of pyruvate kinase of cardiac and skeletal (gastrocnemius) muscles of adult rats of both sexes are lower than those of immature rats. The activity does not change after adulthood in the cardiac muscle, but decreases in the gastrocnemius. The activity of pyruvate kinase of the heart of immature and adult rats of both sexes decreases after castration, but is unaffected in old rats. Castration has no effect on the activity of pyrovate kinase of the gastrocnemius muscle of rats of both sexes at any age. In invo administration of estradiol (50 μg/100 g body weight) increases the activity of pyruvate kinase of the heart of castrated male and female rats of the three ages. For the skeletal muscle, the activity increases in castrated adult female and old male rats only. A higher dose (100 μg) of estradiol has variable effects on pyruvate kinase of the heart of male and female castrated rats of different ages. This dose increase pyruvate kinase significantly in the skeletal muscle of old castrated male and female rats. However, it decreases it in the skeletal muscle of adult castrated male rats. Testosterone (100 μm) increases the activity of pyruvate kinase of the heart of castrated male rats. This increase is lower in old age. It has no effect in the heart of castrated female rats of any age. Testosterone (50 μg) increases pyruvate kinase activity of the skeletal muscle of young ovariectomized rats only. A higher dose (100 μg) causes a significant increase in pyruvate kinase of the skeletal muscle of castrated adult and old male, and young and adult female rats, respectively. These data show that sex steroid hormones induce pyruvate kinase of striated muscles, and that the age- and sex-dependent variations may be due to changes in the levels of receptor proteins.  相似文献   

10.
We have earlier shown that the renal dopaminergic system failed to respond to high salt (HS) intake in old (24-month-old) Fisher 344 rats (Hypertension 1999;34:666-672). In the present study, intestinal Na+,K+-ATPase activity and intestinal dopaminergic tonus were evaluated in adult and old Fischer 344 rats during normal salt (NS) and HS intake. Basal intestinal Na+,K+-ATPase activity (nmol Pi/mg protein/min) in adult rats (142+/-6) was higher than in old Fischer 344 rats (105+/-7). HS intake reduced intestinal Na+,K+-ATPase activity by 20% (P<0.05) in adult, but not in old rats. Dopamine (1 microM) failed to inhibit intestinal Na+,K+-ATPase activity in both adult and old Fischer 344 rats (NS and HS diets). In adult animals, co-incubation of pertussis toxin with dopamine (1 microM) produced a significant inhibitory effect in the intestinal Na+,K+-ATPase activity. L-DOPA and dopamine tissue levels in the intestinal mucosa of adult rats were higher (45+/-9 and 38+/-4 pmol/g) than those in old rats (27+/-9 and 14+/-1 pmol/g). HS diet did not change L-DOPA and DA levels in both adult and old rats. DA/L-DOPA tissue ratios, an indirect measure of dopamine synthesis, were higher in old (1.1+/-0.2) than in adult rats (0.6+/-0.1). Aromatic L-amino acid decarboxylase (AADC) activity in the intestinal mucosa of old rats was higher than in adult rats. HS diet increased the AADC activity in adult rats, but not in old rats. It is concluded that intestinal dopaminergic tonus in old Fisher 344 rats is higher than in adult rats and is accompanied by lower basal intestinal Na+,K+-ATPase activity. In old rats, HS diet failed to alter the intestinal dopaminergic tonus or Na+,K+-ATPase activity, whereas in adult rats increases in AADC activity were accompanied by decreases in Na+,K+-ATPase activity. The association between salt intake, increased dopamine formation and inhibition of Na+,K+-ATPase at the intestinal level was not as straightforward as that described in renal tissues.  相似文献   

11.
Ontogenesis of Adenosine Deaminase Activity in Rat Brain   总被引:1,自引:1,他引:0  
The activity of adenosine deaminase (ADA) was determined in whole brain of rats at the embryonic age of 15 days through to adulthood and in nine brain regions in rats 1 day old through to adulthood. In 1-day-old rats, the highest activity was seen in olfactory bulbs (550 +/- 15 nmol/mg protein/30 min) and this was 4.5-fold higher than that in the pons, which was the lowest. In adult animals, olfactory bulb still contained the greatest activity, which was about eightfold higher than hippocampus, which had the lowest. Except for hypothalamus, where ADA activity increased nearly twofold in rats between the ages of 1 and 50 days, significant decreases of as much as fivefold were found in whole brain, superior colliculus, cortex, hippocampus, cerebellum, olfactory bulbs, and olfactory nucleus. In contrast, ADA activity in pons and subcortex remained relatively constant throughout the developmental period. The Km values for ADA in whole brain at 18 days gestation (48 +/- 5 microM) were not significantly different from that observed in adult rats (38 +/- 7 microM), whereas the Vmax values decreased significantly from 339 +/- 9 to 108 +/- 8 nmol/mg protein/30 min. Taken together, the developmental patterns observed in the various brain regions appear not to correspond to any one particular process such as periods of rapid cell proliferation, cell death, synaptogenesis, or myelination. Nor do they correspond to known developmental profiles of transmitters, their receptors, or their metabolic enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Albino mongrel rats were used for the determination of the gamma-glutamyl transferase (gamma-GTF) and acetylcholine esterase (AChE) activities in various brain areas (cerebral hemispheres, cerebellum, hippocampus, brain stem) during acute (1.5; 4 and 6 g/kg i. p.) and chronic (15 months) alcoholic intoxication and alcohol withdrawal (24-48 h, 4 and 8 days). An increase or a decrease in the activity of these two enzymes in the various rat brain areas depends on the dose of ethanol and the time of its action. The activity of gamma-GTF grew in all brain areas during chronic ethanol intoxication; the activity of AChE was also enhanced in three brain areas but it was diminished in cerebral hemispheres. Alcohol withdrawal caused diverse changes in the activities of these two enzymes in various areas of the brain. A tendency to normalization of the gamma-GTF and AChE activities is manifested 4-8 days after alcohol withdrawal.  相似文献   

13.
The homocarnosine content and homocarnosine synthetase activity were studied in the brain of rats in normal state and under hyperoxia. The homocarnosine content is higher in phylogenetically old brain areas as compared with that in the cerebral hemispheres. Its nonuniform distribution in the brain is associated with different activity of homocarnosine-carnosine synthetase in the corresponding brain areas. At the preconvulsive stage of oxygen poisoning the homocarnosine content in all the brain areas does not change, the homocarnosine-carnosine synthetase activity is 32% lower. At the convulsive stage of hyperoxia the homocarnosine amount in the cerebral hemisphere decreases by 33%, in the midbrain and diencephalon -- by 70, in the medulla oblongata -- by 60, in the cerebellum -- by 58%. The decrease in the homocarnosine content correlates with that in the activity of homocarnosine-carnosine synthetase in the corresponding brain areas; in the cerebral hemispheres -- by 33%, in the midbrain and diencephalon -- by 50, in the medulla oblongata -- by 49, in the cerebellum -- by 40%.  相似文献   

14.
The activities of RNA polymerase I and II were assayed in nuclei isolated from different regions (cerebral cortex, cerebellum, hypothalamus, hippocampus, corpus striatum and pituitary) of brains from young (10 days), adult (6 months), and old (2 years) rats. The RNA polymerases I and II activities generally increased during maturation, i.e., from 10 days to 6 months of postnatal age and then showed a decrease from 6 months to 2 years of age in all the regions except in cerebral cortex where the RNA polymerase II activity was highest at 10 days but showed a gradual decrease through the lifespan up to 2 years.  相似文献   

15.
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medullapons or the cerebellum. Since G4 forms have been proposed to be present presynaptically, their age-related loss in those brain areas where acetylcholine plays an important role in neurotransmission may indicate an impairment of presynaptic mechanisms.  相似文献   

16.
The 5 alpha-reductase, the enzyme which converts testosterone into dihydrotestosterone (DHT), is present in several CNS structures of the rat. Recent reports from this laboratory indicate that the subcortical white matter and the myelin possess a 5 alpha-reductase activity several times higher than that present in the cerebral cortex. Moreover, previous ontogenetic observations indicate that in all cerebral tissues examined (including the myelin) the 5 alpha-reductase has a higher activity in immature animals. This study was performed in order to verify whether the differences in the 5 alpha-reductase activity on the various brain components might be due to the presence of different concentrations of the same enzyme or to different isoenzymes. To this purpose, the kinetic properties Km and Vmax were measured in the purified myelin as well as in homogenates of the subcortical white matter and of the cerebral cortex, obtained from the brain of adult (60-90-day-old), immature (23-day-old), and aged (greater than 20-month-old) male rats. The results indicate that the enzymes present in the myelin, in the subcortical white matter and in the cerebral cortex of adult male rats possess a very similar apparent Km (1.93 +/- 0.2, 2.72 +/- 0.73 and 3.83 +/- 0.49 microM respectively). On the contrary, the Vmax values obtained in the myelin (34.40 +/- 5.54), in the white matter (19.57 +/- 2.36) and in the cerebral cortex (6.47 +/- 1.03 ng/h/mg protein) of adult animals have been found to be consistently different. Very similar Km values were found in the myelin obtained from the brain of immature and very old rats (2.14 +/- 0.11 and 3.39 +/- 0.75 microM respectively). The Vmax measured in the myelin purified from the immature rat brain (62.25 +/- 4.52) showed a value which was much higher than that found in the myelin of adult animals (34.40 +/- 5.54); a Vmax (34.31 +/- 9.41) almost identical to that of adult animals was found in the myelin prepared from the brain of aged rats.  相似文献   

17.
The effects of corticosterone on the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were studied in the chick embryonic brain. Chick embryos received either 0.25, 0.5, or 1.0 g of corticosterone via the air sac daily for three days during either embryonic days 6 through 8 (E6-E8), of cerebral neurogenesis, or days 10 through 12 (E10-E12), a period of cerebellar neurogenesis. Enzyme activities were determined in cerebral hemispheres, optic lobes, cerebellum and remaining brain at 10, 15, and 20 days of incubation. In embryos treated from E6 to E8, ChAT activity was generally higher at day 10 in cerebral hemispheres and optic lobes (cerebellum was not determined) while AChE activity was not affected. At day 20 ChAT activity of treated chick embryos was lower in the cerebral hemispheres and optic lobes, but not in the cerebellum; AChE activity was higher in the cerebral hemispheres, lower in the optic lobes, and not changed in the cerebellum as compared to controls. However, in embryos treated from E10 to E12 both cerebellar ChAT and AChE activities were higher at day 15 in comparison to controls. These data show that the hormonal effects were most prominent only in the brain areas undergoing neurogenesis during the period of hormonal treatment. Since AChE activity is also present in nonneuronal cells, the observed alterations caused by corticosterone may reflect glial cell responses to the hormone. Whether the hormone affects the final number and/or maturation of cholinergic neurons and/or glial cells remain to be investigated.  相似文献   

18.
This study investigated the benefits of Cu preexposition on Hg effects on behavioral tests, acetylcholinesterase (AChE) activity and Hg, and essential metal contents in the cerebrum and cerebellum of neonate rats. Wistar rats received (subcutaneous) saline or CuCl2·2H2O (6.9 mg/kg/day) when they were 3 to 7 days old and saline or HgCl2 (5.0 mg/kg/day) when they were 8 to 12 days old. Mercury exposure reduced the performance of rats in the negative geotaxis (3–13 days) and beaker test (17–20 days), inhibited cerebellum AChE activity (13 days), increased cerebrum and cerebellum Hg (13 days), cerebrum Cu (13 days), and cerebrum and cerebellum Zn levels (33 days). The performance of rats in the tail immersion and rotarod tests as well as Fe and Mg levels were not altered by treatments. Copper prevented all alterations induced by mercury. These results are important to open a new perspective of prevention and/or therapy for mercury exposure.  相似文献   

19.
Localization and ultrastructural maturation of prolactin (PRL) and growth hormone (GH) cells were studied in pituitaries from neonatal, immature (4-6 weeks old), and adult rats (2-3 months old) by light and electron microscopic immunocytochemistry. The distribution pattern of these cells did not change with age. Both cell types were concentrated laterodorsally, with PRL cells adjacent to the intermediate lobe and GH cells nearer the center of the pars distalis. Labeling density of the immunogold reaction was highest for both hormones in immature rats. In neonatal and immature rats, one PRL cell type with granules 200 nm in diameter was present. In adult rats, two types of PRL cells were present: one containing polymorphous granules measuring about 500 nm (prevalent in female rats), the other with spherical granules about 200 nm (prevalent in male rats). No changes were detected in GH cells during maturation.  相似文献   

20.
We have investigated the effects of altered gravity on the kinetic parameters of glutamate transport activity. We observed no differences in Km values for cerebellum and cerebral hemisphere nerve terminals (synaptosomes) between control rats- 18,2 +/- 7,6 micromoles (cerebellum), 10,7 +/- 2,5 micromoles (cerebral hemispheres) and animals exposed to hypergravity- 23,3 +/- 6,9 micromoles (cerebellum), 6,7 +/- 1,5 micromoles (cerebral hemispheres). The similarity of this parameter for the two studied groups of animals showed that affinity of glutamate transporter to substrate in cerebellum and cerebral hemispheres was not sensitive to hypergravity stress. The maximal velocity of L-[14C]-glutamate uptake (Vmax) reduced for cerebellum synaptosomes from 9,6 +/- 3,9 nmol/min/mg of protein in control group to 7,4 +/- 2,0 nmol/min/mg of protein in animals, exposed to hypergravity stress. For cerebral hemisphere synaptosomes the maximal velocity significantly decreased from 12,5 +/- 3,2 nmol/min/mg of protein to 5,6 +/- 0,9 nmol/min/mg of protein, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号