首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The aim of this study is to explore the effects of heavy rain and drought on the flowering phenology of two shrub species Genista tinctoria and Calluna vulgaris. We conducted a field experiment over five consecutive years in Central Europe, applying annually recurring extreme drought and heavy rain events on constructed shrubland communities and recorded the flowering status. Further, we correlated spring temperature and precipitation with the onset of flowering. Both species showed a response to extreme weather events: drought delayed the mid flowering date of Genista tinctoria in 3 of 5 years by about 1 month and in 1 year advanced the mid flowering date by 10 days, but did not affect the length of flowering. Mid flowering date of Calluna vulgaris was not affected by drought, but the length of flowering was extended in 2 years by 6 and 10 days. For C. vulgaris the closer the drought occurred to the time of flowering, the larger the impact on the flowering length. Heavy rainfall advanced mid flowering date and reduced the length of flowering of Genista tinctoria by about 2 months in 1 year. Mid flowering date of Calluna vulgaris was not affected by heavy rain, but the length of flowering was reduced in 1 year by 4 days. Our data suggest that extreme weather events, including alterations to the precipitation regime, induce phenological shifts of plant species of a substantial magnitude. Thus, the impacts of climate extremes on plant life cycles may be as influential as gradual warming. Particularly, the variability in the timing of precipitation events appears to have a greater influence on flowering dynamics than the magnitude of the precipitation.  相似文献   

2.
Climate and weather affect phenological events in a wide range of taxa, and future changes might disrupt ecological interactions. Amphibians are particularly sensitive to climate, but few studies have addressed climatically mediated change in the phenology of closely related species or sexes. Here, we test the hypothesis that changes in spring temperatures result in phenological change among Triturus, and we examine inter‐ and intraspecific differences in response. Coexisting populations of Triturus helveticus and Triturus vulgaris at Llysdinam pond in mid‐Wales (53°12′59″N 3°27′3″W) were monitored using pitfall traps along a drift fence during 1981–1987, and again in 1997–2005. Spring temperature over the same period explained up to 74% of between‐year variability in median arrival date, with a significant advance of 2–5 days with every degree centigrade increase. Changes were greater for males than females of both species, and greater for T. helveticus than T. vulgaris within sexes, resulting in an increasing temporal separation between arrivals of male T. helveticus and all other groups. These data illustrate for the first time how climatic change might have differential effects on sympatric species and on the two sexes.  相似文献   

3.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

4.
Extreme weather events are expected to increase in frequency and magnitude due to climate change. Their effects on vegetation are widely unknown. Here, experimental grassland and heath communities in Central Europe were exposed either to a simulated single drought or to a prolonged heavy rainfall event. The magnitude of manipulations imitated the local 100-year weather extreme according to extreme value statistics. Overall productivity of both plant communities remained stable in the face of drought and heavy rainfall, despite significant effects on tissue die-back. Grassland communities were more resistant against the extreme weather events than heath communities. Furthermore, effects of extreme weather events on community tissue die-back were modified by functional diversity, even though conclusiveness in this part is limited by the fact that only one species composition was available per diversity level within this case study. More diverse grassland communities exhibited less tissue die-back than less complex grassland communities. On the other side, more diverse heath communities were more vulnerable to extreme weather events compared to less complex heath communities. Furthermore, legumes did not effectively contribute to the buffering against extreme weather events in both vegetation types. Tissue die-back proved a strong stress response in plant communities exposed to 100-year extreme weather events, even though one important ecosystem function, namely productivity, remained surprisingly stable in this experiment. Theories and concepts on biodiversity and ecosystem functioning (insurance hypothesis, redundancy hypothesis) may have to be revisited when extreme weather conditions are considered.  相似文献   

5.
Plants are altering their life cycles in response to current climatic change around the globe. More than 200 000 records for six phenological events (leaf unfolding, flowering, fruit ripening, fruit harvesting, leaf falling and growing season) of 29 perennial species for the period 1943–2003 recorded throughout Spain provide the longest temporal and the broadest spatial assessment of plant phenology changes in the Mediterranean region. The overwhelming majority of the 118 studied phenophases shifted their dates in recent decades. Such changes differed among phenological events. Leaf unfolding, flowering and fruiting are markedly advancing (?0.48, ?0.59 and ?0.32 days yr?1, respectively), but only since the mid‐1970s. Anemophilous have advanced more days their flowering than entomophilous. However, some species have delayed and others have advanced their leaf falling dates and as a result only a weak shift was observed in this event for the whole of the studied species (+0.12 days yr?1). The growing season lengthened by 18 days, which implies an increase of 8% in the life of annual leaves. Such an increase was achieved mainly through the advance of leaf unfolding dates in the spring, one of the most productive times of year for vegetation in the Mediterranean. Shifts in the plant calendar were accompanied as well by long‐term changes in the range of onset dates in 39% of studied phenophases. Leaf unfolding, flowering and growing season tended to reduce spatial variability, reflecting a faster and more synchronized onset (or duration) of phenophases across the study area. Changes in spatial variability may aggravate calendar mismatching with other trophic levels resulting from changes in dates. Because temporal responses differed markedly among species, calendar guilds of plants have changed, which suggests alterations of interspecific relationships in plant communities from Mediterranean ecosystems.  相似文献   

6.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

7.
Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity–stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity–stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non‐native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi‐natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.  相似文献   

8.
The frequency and magnitude of extreme weather events such as drought are expected to increase in the future. At present, plant responses to recurrent extreme events have been sparsely examined and the role of stress history on subsequent stress response has been widely neglected. In a long-term field experiment, we investigated the response of grassland and heath communities to a very severe drought event, which exceeded the duration of projected drought scenarios. During the preceding 6 years, the plant communities experienced scenarios of varying water supply, including annually recurring drought, heavy rain, regular watering, and natural drought periods. Single species and plant communities that were regularly watered in the preceding years revealed the highest tissue die-back under a very severe drought when compared to plants that experienced mild or severe drought stress before. Contrary to expectations, the root to shoot ratio did not increase due to previous recurrent drought occurrences. Furthermore, pre-exposure effects on Vaccinium myrtillus and Plantago lanceolata tissue die-back and reproductive biomass (P. lanceolata) were altered by community composition. Recurrent mild drought stress seems to improve drought resistance of plant communities and species. Potential reasons could be epigenetic changes or soil biotic legacies. Morphological legacies such as altered root to shoot ratio did not play a role in our study. Imprinting events which trigger this ecological stress memory do not have to be extreme themselves. Thresholds, longevity of effects, and the role of biodiversity shown by the importance of community composition require further attention.  相似文献   

9.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

10.
Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号