首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
T Hara  A Miyajima 《The EMBO journal》1992,11(5):1875-1884
The human interleukin-3 receptor (IL-3R) is composed of an IL-3 specific alpha subunit (IL-3R alpha) and a common beta subunit (beta c) that is shared by IL-3, granulocyte/macrophage colony stimulating factor (GM-CSF) and IL-5 receptors. In contrast to the human, the mouse has two distinct but related genes, AIC2A and AIC2B, both of which are homologous to the human beta c gene. AIC2B has proved to encode a common beta subunit between mouse GM-CSF and IL-5 receptors. AIC2A is unique to the mouse and encodes a low affinity IL-3 binding protein. Based on the observation that the AIC2A protein is a component of a high affinity IL-3R, we searched for a cDNA encoding a protein which conferred high affinity IL-3 binding when coexpressed with the AIC2A protein in COS7 cells. We obtained such a cDNA (SUT-1) encoding a mature protein of 70 kDa that has weak homology to the human IL-3R alpha. The SUT-1 protein bound IL-3 with low affinity and formed high affinity receptors not only with the AIC2A protein but also with the AIC2B protein. Both high affinity IL-3Rs expressed on a mouse T cell line, CTLL-2, showed similar IL-3 binding properties and transmitted a growth signal in response to IL-3. Thus, the mouse has two distinct functional high affinity IL-3Rs, providing a molecular explanation for the differences observed between mouse and human IL-3Rs.  相似文献   

2.
The functional IL-5 receptor is a heteromeric complex consisting of an alpha and beta subunit. The cloning, sequencing and expression of guinea-pig IL-5Ralpha and beta subunits is described. The guinea-pig IL-5Ralpha subunit cDNA encodes a protein of M(r)47 kDa, which is 72 and 66% homologous to the human and murine orthologs, respectively. Three guinea-pig IL-5Rbeta subunit cDNA clones were isolated, which differ in the N-terminus and are 56-64% homologous to the human and murine IL-5Rbeta subunits. Expressing human IL-5Ralphabeta and guinea-pig IL-5Ralphabeta(1)in the baculovirus-insect cell system resulted in recombinant receptors which bound hIL-5 with high affinity (K(d)=0.19 and 0.11 nM, respectively). Expressing just gpIL-5Ralpha was not sufficient to demonstrate binding. This contrasts with the human receptor, where hIL-5Ralpha alone can bind hIL-5 with high affinity. gpIL-5Ralphabeta(1)bound both hIL-5 and mIL-5 with comparable affinity (K(i)=0.10 and 0.06 nM), similar to that seen with hIL-5Ralphabeta. Thus, both the heteromeric hIL-5R and gpIL-5Ralphabeta(1)can bind multiple IL-5 orthologs with high affinity whereas the murine IL-5R is selective for the murine ligand.  相似文献   

3.
4.
The beta subunit (beta c) of the receptors for human granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5) is essential for high affinity ligand-binding and signal transduction. An important feature of this subunit is its common nature, being able to interact with GM-CSF, IL-3 and IL-5. Analogous common subunits have also been identified in other receptor systems including gp130 and the IL-2 receptor gamma subunit. It is not clear how common receptor subunits bind multiple ligands. We have used site-directed mutagenesis and binding assays with radiolabelled GM-CSF, IL-3 and IL-5 to identify residues in the beta c subunit involved in affinity conversion for each ligand. Alanine substitutions in the region Tyr365-Ile368 in beta c showed that Tyr365, His367 and Ile368 were required for GM-CSF and IL-5 high affinity binding, whereas Glu366 was unimportant. In contrast, alanine substitutions of these residues only marginally reduced the conversion of IL-3 binding to high affinity by beta c. To identify likely contact points in GM-CSF involved in binding to the 365-368 beta c region we used the GM-CSF mutant eco E21R which is unable to interact with wild-type beta c whilst retaining full GM-CSF receptor alpha chain binding. Eco E21R exhibited greater binding affinity to receptor alpha beta complexes composed of mutant beta chains Y365A, H367A and I368A than to those composed of wild-type beta c or mutant E366A. These results (i) identify the residues Tyr365, His367 and Ile368 as critical for affinity conversion by beta c, (ii) show that high affinity binding of GM-CSF and IL-5 can be dissociated from IL-3 and (iii) suggest that Tyr365, His367 and Ile368 in beta c interact with Glu21 of GM-CSF.  相似文献   

5.
The receptor for interleukin-5 (IL-5) is composed of two different subunits. The IL-5 receptor alpha (IL-5R alpha) is required for ligand-specific binding while association with the beta-chain results in increased binding affinity. Murine IL-5 (mIL-5) has similar activity on human and murine cells, whereas human IL-5 (hIL-5) has marginal activity on murine cells. We found that the combined substitution of K84 and N108 on hIL-5 by their respective murine counterpart yields a molecule which is as potent as mIL-5 for growth stimulation of a murine cell line. Since the unidirectional species specificity is due only to the interaction with the IL-5R alpha subunit, we have used chimeric IL-5R alpha molecules to define regions of hIL-5R alpha involved in species-specific hIL-5 ligand binding. We found that this property is largely determined by the NH2-terminal module of hIL-5R alpha, and detailed analysis defined D56 and to a lesser extent E58 as important for binding. Moreover, two additional residues, D55 and Y57, were identified by alanine scanning mutagenesis within the same region. Based on the observed homology between the NH2-terminal module and the membrane proximal (WSXWS-containing) module of hIL-5R alpha we located this stretch of four amino acid residues (D55, D56, Y57 and E58) in the loop region that connects the C and D beta-strands on the proposed tertiary structure of the NH2-terminal module.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In order to determine whether the human insulin receptor ectodomain can be expressed as a functional protein, the coding regions for the transmembrane and cytoplasmic domain of a full-length human insulin receptor cDNA were deleted by site-directed mutagenesis, and the resultant construct was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH3T3 cells, a cell line secreting an insulin binding protein was isolated. The insulin binding alpha subunit had an Mr of 138,000 and a beta subunit of Mr 48,000 (compared to 147,000 and 105,000 for the full-length human insulin receptor expressed in NIH3T3 cells). This difference in size of the alpha subunit was due to a difference in glycosylation as N-glycanase digestion reduced the apparent size of the alpha subunits of secreted and normal membrane-bound receptors to identical values. The secreted receptor formed disulfide-linked heterotetrameric structures with an Mr of 280,000. It was synthesized as an Mr 160,000 precursor which was cleaved into mature subunits with a t1/2 of 3 h. Increasing expression of the cDNA by induction with sodium butyrate lead to the appearance of an Mr 180,000 protein in the medium as well as the mature alpha and beta subunits. A Scatchard plot of insulin binding to the secreted receptor was curvilinear with a Kd of 7 X 10(-10) M for the high affinity sites and 10(-7) M for the low affinity site (compared to Kd values of 1.1 X 10(-9) M and 10(-7) M, respectively, for human insulin receptors expressed in these cells.  相似文献   

7.
Lymphocytes from the human (h) IL-2R alpha chain transgenic mice (TGM) constitutively express high affinity binding sites for hIL-2, consisting of transgenic h-IL-2R alpha and endogenous murine IL-2R beta, and therefore easily proliferate in vitro in response to hIL-2. Our study was undertaken to clarify the hIL-2-responsive lymphocyte subsets in the TGM, which should most likely reflect the normal distribution of m IL-2R beta expression. In both thymus and spleen, the majority of expanded cells by hIL-2 was CD3+CD4-CD8+ TCR alpha beta+ cells. The proliferation of CD4+ cells was not observed at all from either organ despite the expression of transgenic hIL-2R alpha. Potent cellular proliferation was also observed from the thymocytes that had been depleted of CD8+ cells, the expanded cells consisting of CD3- (15-40%) and CD3+ populations (60-85%). Among CD3+ cells, approximately the half portion expressed TCR alpha beta, whereas the other half was suggested to express TCR gamma delta. A variable portion (5-20%) of the CD3+ cells expressed CD8 (Lyt-2) in the absence of Lyt-3, and the CD3+CD8+ cells were confined preferentially to the TCR alpha beta- (TCR gamma delta+) population. In the culture of splenocytes depleted of CD8+ cells, however, the proliferated cells were mostly CD3-CD4-CD8-TCR-Mac1-, whereas a minor portion (10-30%) was CD3+CD4-CD8-TCR alpha beta- (TCR gamma delta+. Analysis of TCR genes at both DNA and mRNA levels confirmed the phenotypical observations. These results strongly suggested that IL-2R beta was constitutively and selectively expressed on the primary murine thymocytes and splenic T and NK cells, except for CD4+ cells in both organs.  相似文献   

8.
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3) and interleukin 5 (IL-5) are composed of two distinct subunits, alpha and beta c. The alpha subunits are specific for each cytokine, whereas the beta subunit (beta c) is shared by the three receptors and is an essential component of signal transduction. We have made a series of mutant beta c cDNAs that delete various regions of the cytoplasmic domain and examined the function of these mutants by coexpressing them with the alpha subunit of the human GM-CSF receptor (hGMR) in an IL-3-dependent mouse pro-B cell line BaF3. Two domains in the membrane-proximal portion of beta c were found to be important for transducing the hGM-CSF-mediated growth signals: one domain between Arg456 and Phe487 appears to be essential for proliferation, and the second domain between Val518 and Asp544 enhances the response to GM-CSF, but is not absolutely required for proliferation. The region between Val518 and Leu626 was responsible for major tyrosine phosphorylation of 95 and 60 kDa proteins. Thus, beta c-mediated major tyrosine phosphorylation of these proteins was apparently separated from proliferation. However, the beta 517 mutant lacking residues downstream of Val518 transmitted a herbimycin-sensitive proliferation signal, suggesting that beta 517 still activates a tyrosine kinase(s). We also evaluated the role of the cytoplasmic domain of the GMR alpha subunit and the results suggest that it is involved in the hGM-CSF-mediated signal transduction, but is not essential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The receptor for IL-2 has been known to exist in three forms on the basis of their affinities to IL-2: high, intermediate, and low affinity forms. Two IL-2R components have been identified as IL-2R alpha (p55, Tac Ag) and IL-2R beta (p70-75) chains, both bind IL-2 with low and intermediate affinities, respectively. Recently, we cloned human IL-2R beta chain cDNA and demonstrated that the cDNA product binds IL-2 with intermediate affinity and forms high affinity IL-2R with coexpressed IL-2R alpha chain in a human T cell line, Jurkat. In this study, we report the establishment of the mouse fibroblast transformants expressing either the IL-2R beta chain alone or both the IL-2R alpha and IL-2R beta chains. In contrast to lymphoid cells, significant IL-2 binding was not detected in the transformants expressing the IL-2R beta chain alone at IL-2 concentrations (50 pM to 10 nM) generally utilized. Nonetheless, the transformants expressing both IL-2R alpha and IL-2R beta chains displayed two forms of the IL-2R with high and low affinities to IL-2. However, neither IL-2 internalization nor signal transduction via the high affinity IL-2R complex were observed in the L929 transformants. Those findings suggest that the interaction of the IL-2R beta chain with the IL-2R alpha chain occurs in the absence of additional lymphoid specific component(s) to form high affinity IL-2R, but that this interaction is insufficient for IL-2 internalization and signal transduction just as observed in lymphoid cells. The experimental approach described here may allow further dissection of the molecular architecture of the IL-2R complex in the ligand binding, internalization, and signal transduction.  相似文献   

10.
S M Zurawski  F Vega  Jr  B Huyghe    G Zurawski 《The EMBO journal》1993,12(7):2663-2670
Interleukin-4 (IL-4) and interleukin-13 (IL-13) are two cytokines that are secreted by activated T cells and have similar effects on monocytes and B cells. We describe a mutant form of human interleukin-4 (hIL-4) that competitively antagonizes both hIL-4 and human interleukin-13 (hIL-13). The amino acid sequences of IL-4 and IL-13 are approximately 30% homologous and circular dichroism (CD) spectroscopy shows that both proteins have a highly alpha-helical structure. IL-13 competitively inhibited binding of hIL-4 to functional human IL-4 receptors (called hIL-4R) expressed on a cell line which responds to both hIL-4 and IL-13. Binding of hIL-4 to an hIL-4 responsive cell line that does not respond to IL-13, and binding of hIL-4 to cloned IL-4R ligand binding protein expressed on heterologous cells, were not inhibited by IL-13. hIL-4 bound with approximately 100-fold lower affinity to the IL-4R ligand binding protein than to functional IL-4R. The mutant hIL-4 antagonist protein bound to both IL-4R types with the lower affinity. The above results demonstrate that IL-4 and IL-13 share a receptor component that is important for signal transduction. In addition, our data establish that IL-4R is a complex of at least two components one of which is a novel affinity converting subunit that is critical for cellular signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号