首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Studies of the isoprene emission rate in response to changes in photon-flux density and CO2 partial pressure were conducted using a recently developed on-line isoprene analyser combined with a gas exchange system and chlorophyll fluorometer. Upon darkening, the isoprene emission rate from leaves of aspen ( Populus tremuloides Michaux.) began to decline immediately, demonstrating that the internal pool of isoprene, or its precursors, is small and that the instantaneous emission rate is tightly coupled to the rate of synthesis. A post-illumination burst of isoprene was observed within 5 min after darkening and lasted for 15–20 min in four isoprene-emitting species that were examined. In leaves of eucalyptus ( Eucalyptus globulus Labill.), the magnitude of the post-illumination burst was dependent on the photon-flux density that existed before darkening, but not on ambient CO2 partial pressure. The dependence of the post-illumination burst on photon-flux density paralleled that for the steady-state rate of isoprene emission. A step-wise increase in intercellular CO2 partial pressure from 24.5 to 60 Pa resulted in an immediate decrease in isoprene emission rate and non-photochemical fluorescence quenching, but an increase in CO2 assimilation rate. Given the several recent studies that link isoprene emission to chloroplastic processes, the results of this study indicate that the linkage is not dependent on the rate of CO2 flux through the reductive pentose phosphate pathway, but rather on more complex relationships involving metabolites not appreciably influenced by CO2 partial pressure.  相似文献   

2.
There is considerable interest in modeling isoprene emissions from terrestrial vegetation, because these emissions exert a principal control over the oxidative capacity of the troposphere. We used a unique field experiment that employs a continuous gradient in CO2 concentration from 240 to 520 ppmv to demonstrate that isoprene emissions in Eucalyptus globulus were enhanced at the lowest CO2 concentration, which was similar to the estimated CO2 concentrations during the last Glacial Maximum, compared with 380 ppmv, the current CO2 concentration. Leaves of Liquidambar styraciflua did not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates from both species were lower for trees grown at 520 ppmv CO2 compared with trees grown at 380 ppmv CO2. When grown in environmentally controlled chambers, trees of Populus deltoides and Populus tremuloides exhibited a 30–40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO2. P. tremuloides exhibited a 33% reduction when grown at 1200 ppmv CO2, compared with 600 ppmv CO2. We used current models of leaf isoprene emission to demonstrate that significant errors occur if the CO2 inhibition of isoprene is not taken into account. In order to alleviate these errors, we present a new model of isoprene emission that describes its response to changes in atmospheric CO2 concentration. The model logic is based on assumed competition between cytosolic and chloroplastic processes for pyruvate, one of the principal substrates of isoprene biosynthesis.  相似文献   

3.
Isoprene is the primary biogenic hydrocarbon emitted from temperate deciduous forest ecosystems. The effects of varying photon flux density (PFD) and nitrogen growth regimes on rates of isoprene emission and net photosynthesis in potted aspen and white oak trees are reported. In both aspen and oak trees, whether rates were expressed on a leaf area or dry mass basis, (1) growth at higher PFD resulted in significantly higher rates of isoprene emission, than growth at lower PFD, (2) there is a significant positive relationship between isoprene emission rate and leaf nitrogen concentration in both sun and shade trees, and (3) there is a significant positive correlation between isoprene emission rate and photosynthetic rate in both sun and shade trees. The greater capacity for isoprene emission in sun leaves was due to both higher leaf mass per unit area and differences in the biochemical and/or physiological properties that influence isoprene emission. Positive correlations between isoprene emission rate and leaf nitrogen concentration support the existence of mechanisms that link leaf nitrogen status to isoprene synthase activity. Positive correlations between isoprene emission rate and photosynthesis rate support previous hypotheses that isoprene emission plays a role in protecting photosynthetic mechanisms during stress.  相似文献   

4.
Stomatal conductance ( g s) and photosynthetic rate ( A ) were measured in young beech ( Fagus sylvatica ), chestnut ( Castanea sativa ) and oak ( Quercus robur ) growing in ambient or CO2-enriched air. In oak, g s was consistently reduced in elevated CO2. However, in beech and chestnut, the stomata of trees growing in elevated CO2 failed to close normally in response to increased leaf-to-air vapour pressure deficit (LAVPD). Consequently, while g s was reduced in elevated CO2 on days with low LAVPD, on warm sunny days (with correspondingly high LAVPD) g s was unchanged or even slightly higher in elevated CO2. Furthermore, during drought, g s of beech and chestnut was unresponsive to [CO2], over a wide range of ambient LAVPD, whereas in oak g s was reduced by an average of 50% in elevated CO2. Stimulation of A by elevated CO2 in beech and chestnut was restricted to days with high irradiance, and was greatest in beech during drought. Hence, most of the additional carbon gain in elevated CO2 was made at the expense of water economy, at precisely those times (drought, high evaporative demand) when water conservation was most important. Such effects could have serious consequences for drought tolerance, growth and, ultimately, survival as atmospheric [CO2] increases.  相似文献   

5.
Adaptation to shade of the light-harvesting apparatus in Silene dioica   总被引:2,自引:1,他引:1  
Abstract. The physiological characteristics and photo-system composition of the photosynthetic apparatus of Silene dioica , a woodland plant, grown in sun and natural shade are examined. As expected, shade leaves exhibited lower chlorophyll a/b ratios, light saturated rates of CO2 assimilation (Asat), dark respiration (Rd,) and light compensation points ( Г ), with both sun and shade leaves having similar absorptances and quantum yields of CO2 assimilation (φ). Shade leaves were able to utilize far-red light for electron transport and carbon assimilation and reach the compensation point. Sun leaves in far-red light had a rate of carbon assimilation equivalent to their dark respiration rate. Chlorophyll fluorescence kinetics from leaves at 77 K together with analyses of thylakoid contents of photosystems (PS) I and II and the light-harvesting cholorphyll a/b protein complex associated with PSII (LHCII) demonstrated that the antenna size of PSII was similar in thylakoids of sun and shade leaves, but shade leaves contained ca. 20% more PSII and ca. 12% less PSI complexes. The increased PSII/PSI ratio in shade leaves accounted for their ability to achieve the compensation point in far-red light. An important feature of photosynethic shade adaptation in S. dioica is an increase in the PSII/PSI ratio and not an increase in the antenna size of PSII. The adaptive response of sun leaves when placed in a shade environment was rapid and had a half-time of ca. 18h.  相似文献   

6.
1. One-year-old seedlings of shade tolerant Acer rubrum and intolerant Betula papyrifera were grown in ambient and twice ambient (elevated) CO2, and in full sun and 80% shade for 90 days. The shaded seedlings received 30-min sun patches twice during the course of the day. Gas exchange and tissue–water relations were measured at midday in the sun plants and following 20 min of exposure to full sun in the shade plants to determine the effect of elevated CO2 on constraints to sun-patch utilization in these species.
2. Elevated CO2 had the largest stimulation of photosynthesis in B. papyrifera sun plants and A. rubrum shade plants.
3. Higher photosynthesis per unit leaf area in sun plants than in shade plants of B. papyrifera was largely owing to differences in leaf morphology. Acer rubrum exhibited sun/shade differences in photosynthesis per unit leaf mass consistent with biochemical acclimation to shade.
4. Betula papyrifera exhibited CO2 responses that would facilitate tolerance to leaf water deficits in large sun patches, including osmotic adjustment and higher transpiration and stomatal conductance at a given leaf-water potential, whereas A. rubrum exhibited large increases in photosynthetic nitrogen-use efficiency.
5. Results suggest that species of contrasting successional ranks respond differently to elevated CO2, in ways that are consistent with the habitats in which they typically occur.  相似文献   

7.
The effects of CO2 enrichment on growth of Xanthomonas campestris pv. pelargonii and the impact of infection on the photosynthesis and export of attached, intact, 'source' leaves of geranium ( Pelargonium x domesticum, 'Scarlet Orbit Improved' ) are reported. Two experiments were performed, one with plants without flower buds, and another with plants which were flowering. Measurements were made on healthy and diseased leaves at the CO2 levels (35 Pa or 90 Pa) at which the plants were grown. There were no losses of chlorophyll, or any signs of visible chlorosis or necrosis due to infection. Lower numbers of bacteria were found in leaves at high CO2, suggesting growth at elevated CO2 created a less favourable condition in the leaf for bacterial growth. Although high CO2 lowered the bacterial number in infected leaves, reductions in photosynthesis and export were greater than at ambient CO2. The capacity of infected source leaves to export photoassimilates at rates observed in the controls was reduced in both light and darkness. In summary, the severity of infection on source leaf function by the bacteria was increased, rather than reduced by CO2 enrichment, underscoring the need for further assessment of plant diseases and bacterial virulence in plants growing under varying CO2 levels.  相似文献   

8.
Abstract: To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations ( p CO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with "control" sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated p CO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated p CO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.  相似文献   

9.
Gas exchange studies in two Portuguese grapevine cultivars   总被引:8,自引:0,他引:8  
Gas exchange characteristics of leaves of Vitis vinifera L. cvs Tinta Amarela and Periquita, two grapevine cultivars grown in distinct climatic regions of Portugal, were studied under natural and controlled conditions. Daily time courses of gas exchange were measured on both a hot, sunny day and a cooler, partly cloudy day. Responses of net photosynthesis to irradiance and internal partial pressure of CO2, were also obtained. A strong correlation between net photosynthesis (PN) and leaf conductance (gs) was found during the diurnal time courses of gas exchange, as well as a relatively constant internal partial pressure of CO2 (Pi), even under non-steady-state conditions. On the cloudless day, both PN and gs were lower in the afternoon than in the morning, despite similar conditions of leaf temperature, air to leaf water vapor deficit and irradiance. The response curves of net photosynthesis to internal CO2 showed linearity up to pi values of 50 Pa, possibly indicating a substantial excess of photosynthetic capacity. When measured at low partial pressures of O2 (1 kPa), PN became inhibited at high CO2 levels. Inhibition of PN at high CO2 was absent under normal levels of O2 (21 kPa). Significant differences in gas exchange characteristics were found between the two cultivars, with T. Amarela having higher rates under similar measurement conditions. In particular, the superior performance of T. Amarela at high temperatures may represent adaptation to the warmer conditions at its place of origin.  相似文献   

10.
The effects of mycorrhiza formation in combination with elevated CO2 concentrations on carbon metabolism of Norway spruce ( Picea abies ) seedlings and aspen ( Populus tremula × Populus tremuloides ) plantlets were analysed. Plants were inoculated for 6 wk with the ectomycorrhizal fungi Amanita muscaria and Paxillus involutus (aspen only) in an axenic Petri-dish culture at 350 and 700 μl l−1 CO2 partial pressure. After mycorrhiza formation, a stimulation of net assimilation rate was accompanied by decreased activities of sucrose synthase, an increased activation state of sucrose-phosphate synthase, decreased fructose-2,6-bisphosphate and starch, and slightly elevated glucose-6-phosphate contents in source leaves of both host species, independent of CO2 concentration. Exposure to elevated CO2 generally resulted in higher net assimilation rates, increased starch as well as decreased fructose-2,6-bisphosphate (aspen only) content in source leaves of both mycorrhizal and nonmycorrhizal plants. Our data indicate only slightly improved carbon utilization by mycorrhizal plants at elevated CO2. They demonstrate however, that both factors which modulate the sink-source properties of plants increase the capacity for sucrose synthesis in source leaves mainly by allosteric enzyme regulation.  相似文献   

11.
Trifolium subterraneum (cv. Dinninup) responds to enriched atmospheric CO2 in a manner similar to that described by Madsen (1968 and 1976) for tomato. In immature leaves, the total chlorophyll content per unit dry weight and the chlorophyll a:b ratio are significantly lower in plants grown at 0.10 vol% CO2. Although fully expanded mature leaves partially overcome the deficit in chlorophyll content, the chlorophyll a:b ratio remains substantially lower in these high CO2 grown plants. The large amount of starch accumulated as irregularly shaped grains appears to disrupt normal chloroplast structure in clover plants grown in enriched atmospheric CO2. These results indicate the chlorotic appearance of leaves from high CO2 grown clover plants is due to a decrease in chlorophyll content per dry weight possibly resulting from large starch grains and starch accumulation altering normal chloroplast structure and function.  相似文献   

12.
Up to 99% of the carbon fuelling the food webs of temperate woodland streams is derived from inputs of terrestrial leaf litter. Aquatic bacteria, fungi, and detritivore invertebrates directly utilize these inputs, transferring this energy to other components of the food web. Increases in atmospheric CO2 could indirectly impact woodland stream food webs by chemically altering leaf litter. This study evaluated CO2-induced chemical changes in aspen ( Populus tremuloides ) leaf litter, and the corresponding effects on stream bacteria, fungi and leaf-shredding cranefly larvae ( Tipula abdominalis : Diptera). Leaf litter from plants grown under elevated CO2 had decreased nutritional value to aquatic decomposers and detritivores because of higher levels of structural compounds and lower nitrogen content. Consequently, elevated CO2-grown leaf litter supported 59% lower bacterial production in a stream than litter grown at ambient CO2 levels, while not affecting fungal biomass. Larval craneflies fed elevated CO2-grown microbially colonized leaves consumed less, assimilated less, and grew 12 times slower than their ambient fed counterparts.  相似文献   

13.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

14.
Net photosynthesis and transpiration of seedlings from shade tolerant, moderately tolerant and intolerant tree species were measured in ambient carbon dioxide (CO2) concentrations ranging from 312 to 734 ppm. The species used, Fagus grandifolia Ehrh. (tolerant), Quercus alba L., Q. rubra L., Liriodendron tulipifera L. (moderately tolerant), Liquidambar styraciflua L. and Pinus taeda L. (intolerant), are found co-occurring in the mixed pine-hardwood forests of the Piedmont region of the southeastern United States. When seedlings were grown in shaded conditions, photosynthetic CO2 efficiency was significantly different in all species with the highest efficiency in the most shade tolerant species, Fagus grandifolia , and progressively lower efficiencies in moderately tolerant and intolerant species. Photosynthetic CO2 efficiency was defined as the rate of increase in net photosynthesis with increase in ambient CO2 concentration. When plants which had grown in a high light environment were tested, the moderately tolerant and intolerant deciduous species had the highest photosynthetic CO2 efficiencies but this capacity was reduced when these species grew in low light. The lowest CO2 efficiency and apparent quantum yield occurred in Pinus taeda in all cases. Water use efficiency was higher for all species in enriched CO2 environments but transpiration rate and leaf conductance were not affected by CO2 concentration. High photosynthetic CO2 efficiency may be advantageous for maintaining a positive carbon balance in the low light environment under a forest canopy.  相似文献   

15.
Diurnal regulation of photosynthesis in understory saplings   总被引:6,自引:1,他引:5  
Photosynthetic rates of plants grown in natural systems exhibit diurnal patterns often characterized by an afternoon decline, even when measured under constant light and temperature conditions. Since we thought changes in the carbohydrate status could cause this pattern through feedback from starch and sucrose synthesis, we studied the natural fluctuations in photosynthesis rates of plants grown at 36 and 56 Pa CO2 at a FACE (free-air-CO2-enrichment) research site. Light-saturated photosynthesis varied by 40% during the day and was independent of the light-limited quantum yield of photosynthesis, which varied little through the day. Photosynthesis did not correspond with xylem water potential or leaf carbohydrate build-up, but rather with diurnal changes in air vapor-pressure deficit and light. The afternoon decline in photosynthesis also corresponded with decreased stomatal conductance and decreased Rubisco carboxylation efficiency which in turn allowed leaf-airspace CO2 partial pressure to remain constant. Growth at elevated CO2 did not affect the afternoon decline in photosynthesis, but did stimulate early-morning photosynthesis rates relative to the rest of the day. Plants grown at 56 Pa CO2 had higher light-limited quantum yields than those at 36 Pa CO2 but, there was no growth–CO2 effect on quantum yield when measured at 2 kPa O2. Therefore, understory plants have a high light-limited quantum yield that does not vary through the day. Thus, the major diurnal changes in photosynthesis occur under light-saturated conditions which may help understory saplings maximize their sunfleck-use-efficiency.  相似文献   

16.
1. Four Lotus corniculatus genotypes differing in cyanoglycoside and condensed tannin concentrations were grown in either low (350 ppm) or high (700 ppm) atmospheric CO2 environments. Larval performance, consumption and conversion efficiency of Polyommatus icarus feeding on this plant material were measured.
2. Plants grown under elevated CO2 contained less cyanoglycosides, more condensed tannins and more starch than control plants. However, water concentration, nitrogen and protein as well as nitrogen concentration in relation to carbon concentration did not differ between CO2 treatments.
3. The four genotypes differed significantly in condensed tannins, cyanoglucoside, leaf water and leaf nitrogen but no genotype–CO2 interaction was detected, except for total phenolics and condensed tannins in which two plant genotypes showed stronger increases under elevated CO2 than the other two.
4. Larvae of P . icarus consumed more plant material and used and converted it more efficiently from plants grown at high atmospheric CO2.
5. Larvae developed significantly faster and were significantly heavier when fed plant material grown under elevated CO2. The observed difference in mass disappeared in the pupal and adult stages. However, lipid concentration of adults from the elevated CO2 treatment was marginally significantly higher than of controls.
6. It is concluded that the higher carbohydrate concentration of L . corniculatus plants grown at elevated CO2 renders leaves more suitable and better digestible to P . icarus . Furthermore, differences in allelochemicals might influence the palatability of L . corniculatus leaves for this specialist on Fabaceae.  相似文献   

17.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

18.
1. Pedunculate Oak trees were grown in ambient and elevated temperatures and CO2. Leaves were fed to Winter Moth caterpillars reared either in constant conditions or with the trees (caged or on-tree).
2. Caterpillars in constant conditions ate the same mass and produced the same mass of faeces whether fed elevated or ambient temperature leaves. However, less was assimilated from elevated leaves, resulting in lighter pupae and fewer, lighter eggs.
3. Caterpillars in constant conditions ate more and produced more faeces when fed elevated CO2 leaves than when fed ambient CO2 leaves, but the mass assimilated and pupal mass were unchanged.
4. Caged caterpillars reared with the trees from which they were fed had constant pupal mass in all treatments, but pupated earlier at elevated temperature. Pupal mass was also unaffected when caterpillars fed on the trees.
5. Nitrogen was reduced in both elevated temperature and elevated CO2 leaves. Increased fibre in the former prevented increased consumption and resulted in reduced pupal mass and fecundity. Reduced fibre in the latter allowed increased consumption, resulting in pupae of normal mass.
6. Despite the clear effect of nutrient quality, experiments rearing caterpillars and trees together suggest that anticipated climatic change will have no nutritional effect on Winter Moth development.  相似文献   

19.
Stomatal and photosynthetic responses to variable sunlight   总被引:11,自引:0,他引:11  
Most plants experience many fluctuations in sunlight from full sun to shade throughout the day. Under these conditions, stomatal and photosynthetic responses vary dramatically among species depending on water status and growth form. Many herbaceous, fast-growing species rapidly reduce stomatal opening during short-term shade periods. Rapid stomatal closure during shade conserves water, but may also reduce CO2 uptake. Because periods of alternating sun and shade can reduce accumulative water stress that would otherwise severely curtail carbon gain, some herbs are restricted to habitats with intermittent periods of shade. In contrast to herbaceous growth forms, woody species maintain relatively constant stomatal opening during both sun and shade periods. This results in greater CO2 uptake, but with greater water loss. These two generalized response patterns for woody and herbaceous species to natural variations in sunlight conflict with conventional ideas of water use and carbon gain based on measurements made under constant light.  相似文献   

20.
Mature leaves of shade species exhibit lower respiratory rates than those of sun species. To elucidate the mechanism underlying different respiratory rates between sun and shade species, we examined respiratory properties of leaves in Spinacia oleracea L., a sun species, and Alocasia odora (Lodd.) Spach, a shade species, with special reference to changes in the respiratory rate throughout the night. In S. oleracea , rates of both CO2 efflux and O2 uptake decreased with time during the night, whereas in A. odora both rates were virtually constant at lower levels. The rates of O2 uptake in S . oleracea increased upon addition of sucrose, and the rates attained were virtually identical throughout the night. However, the addition of an uncoupler [carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone; FCCP] did not alter the rates. In contrast, the rates of O2 uptake in A. odora were enhanced by the addition of FCCP, but not by sucrose. The concentrations of carbohydrates in the tissue decreased throughout the night in both species and the ATP/ADP ratio was always greater in A. odora. These results indicate that, in S. oleracea , the availability of respiratory substrate determines the respiratory rate, while the low respiratory rate in A. odora is ascribed to its low demand for ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号