首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces   总被引:4,自引:2,他引:2       下载免费PDF全文
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe3+ on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments.  相似文献   

2.
Size changes during starvation of 17 marine bacterial isolates at a solid-water interface and in the liquid phase were examined. Twelve rod-shaped, hydrophilic bacteria decreased in size more rapidly at the solid surface than in the liquid phase, a result parallel to that observed previously for one of the strains at an air-water interface. On the other hand, three rod-shaped, hydrophobic bacteria diminished in size more rapidly in the liquid phase than at the solid-water interface. The rapid size decrease (defined here as the dwarfing phase) in either situation appeared to be an active process which occurred more rapidly when the cells were in an early stage of logarithmic growth at the onset of starvation. Dwarfing was reversibly inhibited by low temperature and low pH but was not inhibited by chloramphenicol. Three coccoidal bacteria showed little tendency to become smaller upon starvation in the liquid phase or at a surface.  相似文献   

3.
A marine Pseudomonas sp. S9 produced and released an extracellular polysaccharide during complete energy and nutrient starvation in static conditions. The presence of the polysaccharide on the cell surface, demonstrable by immune transmission electron microscopy, correlated with changes in the degree of adhesion to hydrophobic surfaces. Polysaccharide coated cells showed a lower degree of adhesion than did cells devoid of the polymer. After 10 h of starvation, no ruthenium red stained antibody stabilized polysaccharides could be observed on the cell surface. The polysaccharide was not produced during growth since lysates of mid-log phase cells did not precipitate the antiserum. The relative proportions of sugars in the polysaccharide were 28% glucose, 35% N-acetylglucosamine and 37% N-acetylgalactosamine. The released polysaccharide did not significantly alter the physical parameters of surface tension and viscosity of the starvation regime. Cells starved in agitated conditions did not produce any extracellular polysaccharides and exhibited a different adhesion pattern to hydrophobic surfaces.Non-standard abbreviations FSS Four salt solution - GLC gas liquid chromatography - MS Mass spectrometry - NSS nine salt solution  相似文献   

4.
Effect of Interfaces on Small, Starved Marine Bacteria   总被引:26,自引:19,他引:7       下载免费PDF全文
The copiotrophic marine Vibrio sp. strain DW1, shown previously in batch culture to increase in numbers at the onset of starvation and then to form viable small cells with low endogenous respiration, appears to have a survival advantage at interfaces. Vibrio sp. strain DW1 behaved differently at interfaces compared with the aqueous phase under starvation conditions: (i) small cells were observed at an air-water interface without nutrients, (ii) nutrients added to the air-water interface quickly produced larger cells at the surface, (iii) motility persisted many hours longer at the solid-water interface of a dialysis membrane in a microchamber at the onset of starvation, and (iv) regrowth and division at the solid-liquid interface occurred quickly and at nutrient concentrations too low to permit growth in the aqueous phase. It was concluded that, if small starved cells from copiotrophic bacteria can reach an interface, additional survival mechanisms become available to them: (i) interfaces constitute areas of favorable nutrient conditions, and (ii) interfaces lacking a sufficient amount of nutrient, nevertheless, trigger cells to become smaller, thus increasing their surface/volume ratio and the packing density.  相似文献   

5.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated “type 021N,” were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and “type 021N” strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from “type 021N” filaments. The outer cell wall appeared more complex in “type 021N” strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of “type 021N” bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

6.
Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence.  相似文献   

7.
Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil.  相似文献   

8.
Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein β-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.  相似文献   

9.
The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retention times and mass spectra of trimethylsilyl derivatives to the retention times and mass spectra of authentic chemical standards. 13C nuclear magnetic resonance spectroscopy confirmed that cyclohexane carboxylate and cyclohex-1-ene carboxylate were produced from [ring-13C6]benzoate. None of the metabolites mentioned above was detected in non-substrate-amended or heat-killed controls. Cyclohexane carboxylic acid accumulated to a concentration of 260 μM, accounting for about 18% of the initial benzoate added. This compound was not detected in culture extracts of Rhodopseudomonas palustris grown phototrophically or Thauera aromatica grown under nitrate-reducing conditions. Cocultures of “S. aciditrophicus” and Methanospirillum hungatei readily metabolized cyclohexane carboxylate and cyclohex-1-ene carboxylate at a rate slightly faster than the rate of benzoate metabolism. In addition to cyclohexane carboxylate, pimelate, and glutarate, 2-hydroxycyclohexane carboxylate was detected in trace amounts in cocultures grown with cyclohex-1-ene carboxylate. Cyclohex-1-ene carboxylate, pimelate, and glutarate were detected in cocultures grown with cyclohexane carboxylate at levels similar to those found in benzoate-grown cocultures. Cell extracts of “S. aciditrophicus” grown in a coculture with Desulfovibrio sp. strain G11 with benzoate or in a pure culture with crotonate contained the following enzyme activities: an ATP-dependent benzoyl-CoA ligase, cyclohex-1-ene carboxyl-CoA hydratase, and 2-hydroxycyclohexane carboxyl-CoA dehydrogenase, as well as pimelyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, and the enzymes required for conversion of crotonyl-CoA to acetate. 2-Ketocyclohexane carboxyl-CoA hydrolase activity was detected in cell extracts of “S. aciditrophicus”-Desulfovibrio sp. strain G11 benzoate-grown cocultures but not in crotonate-grown pure cultures of “S. aciditrophicus”. These results are consistent with the hypothesis that ring reduction during syntrophic benzoate metabolism involves a four- or six-electron reduction step and that once cyclohex-1-ene carboxyl-CoA is made, it is metabolized in a manner similar to that in R. palustris.  相似文献   

10.
Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer “adaptation time” for the flagellate communities toward the large prey size offered.  相似文献   

11.
Exoprotease Activity of Two Marine Bacteria during Starvation   总被引:12,自引:7,他引:5       下载免费PDF全文
Exoprotease activity during 120 h of total energy and nutrient starvation was examined in two marine bacteria, Vibrio sp. strain S14 and Pseudomonas sp. strain S9. The activity was determined by spectrophotometric measurement of the rate of release of soluble color from an insoluble azure dye derivative of hide powder (hide powder azure). Starved cells of both strains (5 h for S14, and 4 or 24 h for S9) showed greater extracellular proteolytic activity than at the onset of starvation. The exoprotease activity of cells starved for longer periods of time then decreased, but was found to be present at significant levels throughout the starvation period studied (120 h). The accumulation of exoprotease activity in the bulk phase during starvation indicated that both strains constitutively excreted extracellular proteases. As deduced from experiments with chloramphenicol, de novo protein synthesis during starvation was required for the production and/or release of the exoproteases into the surrounding environment. The degradation of hide powder azure allowed an immediate increase in respiration rate, also by long-term-starved cells. This suggests that metabolic systems are primed to respond to the availability of substrates, allowing the cells to recover rapidly. The regulation of exoprotease activity was also studied and found to be different in the two strains. Casamino Acids repressed exoprotease activity in Pseudomonas sp. strain S9, whereas a mechanism similar to catabolite repression was found for Vibrio sp. strain S14 in that glucose repressed activity and cyclic AMP reversed this effect. The exoproteases appeared to be metalloproteinases because the addition of EDTA to cell-free starvation supernatants from both strains significantly inhibited the activity of the proteases.  相似文献   

12.
The addition of streptomycin to nonsterile soil suppressed the numbers of bacterial cells in the rhizosphere of alfalfa (Medicago sativa L.) for several days, resulted in the enhanced growth of a streptomycin-resistant strain of Rhizobium meliloti, and increased the numbers of nodules on the alfalfa roots. A bacterial mixture inoculated into sterile soil inhibited the colonization of alfalfa roots by R. meliloti, caused a diminution in the number of nodules, and reduced plant growth. Enterobacter aerogenes, Pseudomonas marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by R. meliloti of roots grown on agar and reduced nodulation by R. meliloti, the suppression of nodulation being statistically significant for the first three species. Bradyrhizobium sp. and “Sarcina lutea” did not suppress root colonization nor nodulation by R. meliloti. The doubling times in the rhizosphere for E. aerogenes, P. marginalis, Acinetobacter sp., and K. pneumoniae were less and the doubling times for Bradyrhizobium sp. and “S. lutea” were greater than the doubling time of R. meliloti. Under the same conditions, Arthrobacter citreus injured alfalfa roots. We suggest that competition by soil bacteria reduces nodulation by rhizobia in soil and that the extent of inhibition is related to the growth rates of the rhizosphere bacteria.  相似文献   

13.
Roots of soybean (Glycine max [L.] Merr. cv Hardee) and cowpea (Vigna unguiculata [L.] Walp. cv Pink Eye Purple Hull) were immersed in suspensions containing 104Rhizobium cells per milliliter of a nitrogen-free solution. After 30 to 120 minutes the roots were rinsed, and the distal 2-centimeter segments excised and homogenized. Portions of the homogenates then were plated on a yeast-extract mannitol medium for bacterial cell counts. The adsorption capacities of four slow-growing rhizobia and a fast-growing R. meliloti strain varied considerably. Adsorption was independent of plant species and of the abilities of the Rhizobium strains to infect and nodulate. R. lupini 96B9 had the greatest adsorption capacity, and Rhizobium sp. 3G4b16 the least. Rhizobium sp. 229, R. japonicum 138, and R. meliloti 102F51 were intermediate, except on cowpea, where the adsorption of strain 102F51 was similar to that of strain 3G4b16. The initial adsorption rates of bacteria cultured in synthetic media and in the presence of soybean roots were about the same. Addition of soybean lectin to the bacterial inoculum failed to influence initial adsorption rates. Both treatments, however, reduced the numbers of bacteria that bound after incubation with roots for 120 minutes. The relationship between the logarithm of the number of strain 138 cells bound per soybean root segment and the logarithm of the density of bacteria in the inoculum was linear over five orders of magnitude. Binding of strain 138 to soybean roots was greatest at room temperature (27°C) and substantially attenuated at both 4 and 37°C. Although R. lupini 96B9 strongly rejected a model hydrophobic plastic surface, there were no simple correlations between bacterial binding to model hydrophobic and hydrophilic plastic surfaces and bacterial adsorption to roots.  相似文献   

14.
Presence of glycogen granules in anaerobic ammonium-oxidizing (anammox) bacteria has been reported so far. However, very little is known about their glycogen metabolism and the exact roles. Here, we studied the glycogen metabolism in “Ca. Brocadia sinica” growing in continuous retentostat cultures with bicarbonate as a carbon source. The effect of the culture growth phase was investigated. During the growing phase, intracellular glycogen content increased up to 32.6 mg-glucose (g-biomass dry wt)−1 while the specific growth rate and ATP/ADP ratio decreased. The accumulated glycogen begun to decrease at the onset of entering the near-zero growth phase and was consumed rapidly when substrates were depleted. This clearly indicates that glycogen was synthesized and utilized as an energy storage. The proteomic analysis revealed that “Ca. B. sinica” synthesized glycogen via three known glycogen biosynthesis pathways and simultaneously degraded during the progress of active anammox, implying that glycogen is being continuously recycled. When cells were starved, a part of stored glycogen was converted to trehalose, a potential stress protectant. This suggests that glycogen serves at least as a primary carbon source of trehalose synthesis for survival. This study provides the first physiological evidence of glycogen metabolism in anammox bacteria and its significance in survival under natural substrate-limited habitat.Subject terms: Applied microbiology, Water microbiology  相似文献   

15.
This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)—Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135–149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense.  相似文献   

16.
17.
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an “azo reductase.” The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic “azo reductases,” which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.  相似文献   

18.
Starvation-Induced Effects on Bacterial Surface Characteristics   总被引:23,自引:15,他引:8       下载免费PDF全文
Changes in bacterial surface hydrophobicity, charge, and degree of irreversible binding to glass surfaces of seven marine isolates were followed during starvation. The degree of hydrophobicity was measured by hydrophobic interaction chromatography and by two-phase separation in a hexadecane-water system, whereas changes in charge were measured by electrostatic interaction chromatography. All isolates underwent the starvation-induced responses of fragmentation, which is defined as division without growth, and continuous size reduction, which results in populations with increased numbers of smaller cells. The latter process was also responsible for a significant proportion of the total drop in cell volume; this was observed by noting the biovolume (the average cell multiplied by the number of bacteria) of a population after various times of starvation. Four strains exhibited increases in both hydrophobicity and irreversible binding, initiated after different starvation times. The most hydrophilic and most hydrophobic isolates both showed a small increase in the degree of irreversible binding after only 5 h, followed by a small decrease after 22 h. Their hydrophobicity remained constant, however, throughout the entire starvation period. On the other hand, one strain, EF190, increased its hydrophobicity after 5 h of starvation, although the degree of irreversible binding remained constant. Charge effects could not be generally related to the increase in irreversible binding. Scanning electron micrographs showed a large increase in surface roughness throughout the starvation period for all strains that showed marked changes in physicochemical characteristics.  相似文献   

19.
Using laminar flow chambers and time-lapse video imaging, colonization of surfaces by four marine bacteria revealed a diverse range of morphological characteristics and cell-cell interactions. The strain SW5 formed a compact, multilayered single- and double-cell biofilm on hydrophobic surfaces but developed long multicellular chains on hydrophilic surfaces. The morphologically similar SW8 showed unusual proximal vertical packing of cells on both substrata.Vibrio sp strain S14 exhibited cyclical colonization-detachment events on both substrata.Pseudomonas sp strain S9 initially displayed reversible and then irreversible adhesion apparently triggered by a cell density phenomenon that led to the development of regular microcolonies on both substrata with individual cells translocating between the colonies. The length of time bacteria were exposed to and their density at a surface influenced behavioral traits, with diverse and distinctive species-specific behavioral events.  相似文献   

20.
MreB, the homolog of eukaryotic actin, may play a vital role when prokaryotes cope with stress by altering their spatial organization, including their morphology, subcellular architecture, and localization of macromolecules. This study investigates the behavior of MreB in Vibrio parahaemolyticus under various stresses. The behavior of MreB was probed using a yellow fluorescent protein-MreB conjugate in merodiploid strain SC9. Under normal growth conditions, MreB formed helical filaments in exponential-phase cells. The shape of starved or stationary-phase cells changed from rods to small spheroids. The cells differentiated into the viable but nonculturable (VBNC) state with small spherical cells via a “swelling-waning” process. In all cases, drastic remodeling of the MreB cytoskeleton was observed. MreB helices typically were loosened and fragmented into short filaments, arcs, and spots in bacteria under these stresses. The disintegrated MreB exhibited a strong tendency to attach to the cytoplasmic membrane. The expression of mreB generally declined in bacteria in the stationary phase and under starvation but was upregulated during the initial periods of cold shock and VBNC state differentiation and decreased afterwards. Our findings demonstrated the behavior of MreB in the morphological changes of V. parahaemolyticus under intrinsic or extrinsic stresses and may have important implications for studying the cellular stress response and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号