首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
When exposed to the phorbol ester TPA, HL60 cells undergo growth arrest and differentiate towards monocytes. During TPA-induced differentiation there was a 2.6-fold increase in the rate of inositol transport (Vmax), a 2.1-fold increase in intracellular inositol and a 1.5-fold increase in inositol lipid. An increase in the Vmax of inositol transport did not occur when the variant cell line HL60Ast3 was exposed to TPA, which has been shown in this cell line to induce growth arrest but not differentiation. This observation suggests that the change in inositol transport during HL60 monocyte differentiation is specifically associated with the process of cell differentiation as opposed to growth arrest.  相似文献   

2.
The human leukemia cell line HL60 which resembles promyelocytes can be induced to differentiate to cells displaying features of the mature myeloid phenotype by a variety of agents including retinoic acid (RA) and agents that elevate intracellular adenosine 3:5 cyclic monophosphate (cyclic AMP) levels, e.g., 8-bromo-cyclic adenosine 3:5 monophosphate (8-Br-cyclic AMP), cholera toxin. Since most, if not all the effects of cyclic AMP, are mediated by adenosine 3:5 cyclic monophosphate-dependent protein kinase (cyclic AMP-dPK), we investigated the role of cyclic AMP-dPK and adenosine 3:5 cyclic monophosphate-independent protein kinase (cyclic AMP-iPK) in the induced differentiation of HL60 cells. Marked stimulation of cyclic AMP-dPK and cyclic AMP-iPK appears to be intimately involved with and specific for HL60 myeloid differentiation as evidenced by: (1) Stimulation of cyclic AMP-dPK and cyclic AMP-iPK early during HL60 myeloid differentiation and prior to phenotypic changes. (2) RA and dimethylformamide (DMF), agents that induce differentiation along the myeloid pathway, cause a marked increase in the type I cytosolic cyclic AMP-dPK and cyclic AMP-iPK (protamine kinase) while no such increases are noted in cells treated with 12-0-tetradecanoyl-phorbol-13-acetate (TPA) which induces differentiation along the monocyte/macrophage pathway. (3) Both native polyacrylamide gel electrophoresis as well as photoaffinity labeling with 8-azido-cyclic AMP demonstrate marked increases in type I cyclic AMP-dPK in the cytosols of cells exposed to agents that induce myeloid differentiation but no increase in TPA-differentiated cells. (4) The appearance and disappearance of specific cyclic AMP-dependent and -independent protein phosphorylations are associated with the induced myeloid differentiated state.  相似文献   

3.
Abstract. Terminal cell differentiation results in an irreversible arrest in the G1 phase of the cell cycle and loss of the capacity for cell renewal. In the murine erythroleukaemia cell line (MELC), commitment to erythroid differentiation was found also to be preceded by an early, transient, phase of inhibition of growth due to prolongation of the G1 phase. We determined the effect of differentiation-inducing agents on the growth kinetics of a human promyelocytic cell line (HL60) which undergoes differentiation into mature granulocyte. At concentrations of inducers optimal for cell differentiation, an early, transient stimulation of cell multiplication was found. DNA synthesis was enhanced in HL60 cells as early as 5 hr after exposure to inducer. Nevertheless, HL60 cell maturation eventually also resulted in a loss of the multiplication ability. The duration of exposure to inducer required for irreversible loss of the potential for self-renewal was determined by the fall in the cloning efficiency of induced cells; the results indicate that it preceded the switch-off of the replication mechanism; the majority of the cells lost their ability to form large colonies at the time of peak DNA synthesis and were able to complete an additional two to three cell cycles at a rate similar to uninduced cells. These changes occurred before HL60 cells became committed and might play a pivotal role in the process of cell differentiation.  相似文献   

4.
5.
When the human myeloid leukemia cell line (HL60) is induced to differentiate with retinoic acid (RA), there is a concentration-dependent increase in transglutaminase (TGase) activity which peaks on day 5. While dibutyryl 3',5'-cyclic adenosine monophosphate (db-cAMP) alone produced only a slight increase in TGase activity in HL60 cells, the concomitant addition of db-cAMP (100 microM) with RA (10(-12)-10(-4) M) potentiates RA induction of TGase activity. Maximal increases in TGase activity (2- to 10-fold) were observed with 10(-4)-10(-7) M RA and when db-cAMP was present from 24 to 48 h after the addition of RA. The cyclic nucleotide enhancement was dose-dependent from 10 to 100 microM of cAMP. Less marked increases were observed with 8-bromo-cAMP and with the phosphodiesterase inhibitor theophylline. Although the simultaneous addition of PGE1 or PGE2 (10(-8)-10(-6) M) produced no enhancement of RA-induced TGase activity, adding PGE1 or PGE2 24 or 48 h following RA treatments produced an enhancement of TGase activity. The phosphodiesterase inhibitor potentiated the increases produced by db-cAMP and the prostaglandins. Dibutyryl cAMP enhanced the ability of RA to induce the cells to reduce nitroblue tetrazolium (NBT), a functional measure of differentiation, at lower concentrations of RA and with shorter treatment durations. cAMP potentiates RA-induced TGase activity in HL60 cells and the combination appears to be associated with enhanced RA-induced differentiation.  相似文献   

6.
7.
Treatment of human promyelocytic (HL60) cells with retinoic acid for at least 48 h causes differentiation to more mature myeloid forms. Prior to commitment of cells to the myeloid pathway there is a marked increase in cytosolic calcium-activated, phospholipid-dependent protein kinase activity. This increase does not result from an intracellular redistribution of the enzyme. Concomitant with the increased enzyme activity there is enhanced phospholipid-dependent phosphorylation of proteins of 29, 49, 52, 58, 68, 69, 120, 170, 200 and 245 kDa.  相似文献   

8.
Two HL60 clones (C12 and C13) totally insensitive to differentiation induction by dimethylsulfoxide (Me2SO) are described. They have been growing continuously in the presence of the inducer for more than 6 months. The morphological and cytochemical features of the two populations are quite similar to those of the original HL60 cell line, whereas a different karyotype with marked hyperploidy (modal chromosome number of 86 for C12 and 82 for C13) was detected. An antigenic pattern analogous to that of the native HL60 cell line was found in C12 and C13 populations using three monoclonal antibodies differently reactive to myeloid cells. Both clones can be induced to differentiate by retinoic acid (RA) and 12-O-tetradecanoylphorbol 13-acetate (TPA). The pattern of differentiation was assessed by morphological, cytochemical, phenotypical and functional markers. Differentiation of C12 cells by RA and TPA was similar to that observed with native HL60 cells, whereas C13 cells showed lower degrees of sensitivity to RA and TPA. The data presented suggest the existence of different mechanisms for induction of differentiation by Me2SO, RA and TPA. In addition, they are in accordance with previous observations of different degrees of inducibility to differentiation among leukemic cell populations in culture.  相似文献   

9.
The sensitivity of normal diploid Syrian hamster embryo (SHE) cells to apoptosis was tested after treatment with the topoisomerase inhibitors camptothecin and etoposide and after serum withdrawal. Programmed cell death (PCD) was identified through morphological, biochemical, and molecular changes and compared with that of HL60 cell line. The results showed that topoisomerase inhibitors, which were shown to be potent PCD inducers in the HL60 cell line, induced a weaker apoptotic response in SHE cells than after growth factor deprivation. In addition, serum-free medium, which rapidly induced apoptosis in SHE cells, did not affect the HL60 cell line. In both cell types, PCD was expressed by condensed chromatin, fragmented nuclei, and DNA laddering on electrophoretic gels, an indisputable sign of apoptosis. In apoptotic HL60 cells, the cleavage of 113-kDa poly(ADP-ribose)polymerase (PARP) resulted in the so-called apoptotic 89-kDa fragment and was associated with increased caspase-3 activity. In apoptotic SHE cells, PARP degraded early but the degradation profile was not characterized by the appearance of an 89-kDa fragment. Moreover, no activation of caspase-3 was noted. ZnCl(2), which is known to prevent protease activity responsible for apoptosis features, inhibited PARP cleavage and nuclear modifications induced by apoptotic stimuli in both cell types, but with a higher sensitivity in SHE cells. Apoptosis induced by serum deprivation was linked with c-myc negative regulation in SHE cells, but not with p53 protein accumulation, while topoisomerase inhibitors led to p53 stabilization without any change in c-myc expression. Serum-free medium and topoisomerase inhibitors did not modify c-myc expression in the HL60 cell line. The overall results demonstrated that apoptosis, which is a carefully regulated process of cell death, may proceed through mechanisms varying according to cell type or apoptosis inducer. In addition, markers which are generally considered hallmarks of apoptosis may fail to appear in some cell types.  相似文献   

10.
Retinoic acid, which induces the differentiation of HL 60 cells to granulocytes, produces a cell alkalinization from pHi = 7.03 to pHi = 7.37. The half-maximum effect of retinoic acid is observed at 10 nM. The effect of retinoic acid on the pHi develops slowly, and it precedes the differentiation of the cells. A cell alkalinization is also observed after differentiation of the cells by dimethyl sulfoxide. It is not observed using etretinate, a synthetic retinoid that does not promote the differentiation of HL 60 cells. Two pHi regulating mechanisms coexist in HL 60 cells. The Na+/H+ exchange system is the major mechanism that allows HL 60 cells to recover from an intracellular acidosis. A second mechanism is a Na-HCO3 cotransport system. During differentiation of the cells by retinoic acid, a 2-fold increase in the activity of the Na+/H+ exchange system is observed, while the activity of the NaHCO3 cotransport remains constant. The properties of interaction of the Na+/H+ exchanger with internal H+, external Na+, and Li+ as well as with amiloride and its derivatives are defined. The Na+/H+ exchanger of HL 60 cells is characterized by unusually low affinities for alkali cations and a high affinity for amiloride and its derivatives. The pHi dependence of the exchanger is not modified after differentiation by retinoic acid. It is concluded that the mechanism of activation of the Na+/H+ exchanger by retinoic acid is distinct from the short-term effect produced by mitogens and phorbol esters which change the pHi dependence of the system.  相似文献   

11.
To gain some insight into the role of c-myb and c-fes in myeloid differentiation, the authors have analyzed the ability of HL60 cells to differentiate in response to several different inducers after inhibition of c-myb and c-fes function. This function has been inhibited almost completely by using deoxynucleotides complementary to two 18-nucleotide sequences of c-myb and c-fes encoding mRNA. After 5 days in culture, in several separate experiments with different oligomer preparations, more than 90% growth inhibition was observed in c-myb antisense-treated HL60 cells. At this time, independent of the differentiation inducer used, c-myb antisense-treated HL60 cells differentiate only along the monocytic pathway, whereas in sense oligomer-treated cultures, retinoic acid and dimethyl sulfoxide induced granulocytic differentiation. No perturbation of the HL60 cell growth was observed after 5 days of treatment with antisense c-fes oligomer. However, induction to granulocytic differentiation by retinoic acid and dimethyl sulfoxide resulted in progressive cell death, whereas monocytic differentiation by other differentiation inducers was only marginally affected. These results suggest that granulocytic, unlike monocytic, differentiation requires c-myb-conditioned proliferation and the activity of the protein encoded by c-fes.  相似文献   

12.
Summary Variations in the (2′–5′) oligoadenylate synthetase (2–5 A synthetase) level were examined prior to and during the differentiation in culture of the human monocyte cell line U937 and the promyelocytic cell line HL60 in an attempt to reveal whether the enzyme is actively involved in hematopoietic cell maturation. The basal level of this enzyme was much higher in U937 than in HL60 cells. The activity of 2–5 A synthetase was enhanced in both cell lines in response to α, β interferons. During cell differentiation, ten markers were measured. The level of the enzyme rose during the process of cellular maturation in both cell lines. The 2–5 A synthetase activity observed in differentiated HL60 and U937 cells was comparable to that observed in mature normal granulocytes and monocytes respectively. Induction of U937 differentiation by chemicals was associated with detectable production of IFN. The increase in enzyme activity observed was mostly dependent on endogenous production of interferon, since it was inhibited by interferon antibodies. Kinetic studies showed that in U937 cells 2–5 A synthetase was expressed prior to several of the differentiation markers. The rise in the enzyme's level observed during the differentiation of HL60 cells was independent of endogenous production of interferon, since it was not inhibited by the addition of anti-interferon antibodies. These results suggest that different biochemical and molecular mechanisms are responsible for the induction of 2–5 A synthetase observed during the differentiation of hematopoietic cells. In any case, 2–5 A synthetase can be considered as a biochemical marker of cell status and differentiation in hematopoietic cells.  相似文献   

13.
The effects of protein kinase C (PKC) inhibitor polymyxin B (PMB) and PKC activators 12-O-tetradecanoylphorbol-13-acetate (TPA) and bryostatin on intact HL60 cells were examined. It was found that each of the three agents exhibited similar effects on phosphorylation of certain endogenous proteins, PKC translocation from cytoplasm to plasma membrane and formation of CDP-choline. TPA, however, was the only agent that stimulated phosphatidylcholine formation. Differentiation of HL60 cells was potently induced by TPA; in comparison bryostatin was a relatively weaker inducer and PMB was without effect. The data indicated that the effects of the PKC inhibitor PMB on intact cells could not be predicted by its in vitro activity, and that certain TPA-dependent but PKC-independent reactions might be crucial in HL60 cell differentiation.  相似文献   

14.
The human promyelocytic leukemia cell line HL60 differentiates to monocyte/macrophage cells when incubated with NADPH-linked high-Km aldehyde reductase (EC 1.1.1.2) purified from the cytosol of rat kidney. Differentiation was assessed by cell growth, morphology, adhesiveness, nitro blue tetrazolium reduction, and nonspecific esterase activity. The extent of differentiation induced by the reductase and measured at 4 days by nitro blue tetrazolium reduction is dose-dependent with an ED50 (dose required for half-maximal effect) of 71 nM. In the presence of 10 nM retinoic acid the ED50 for reductase is reduced to 18 nM and an isobologram analysis of this effect indicates that the combination is synergistic. Inactivation of the enzymatic activity is not associated with a decrease in differentiation-induced activity. These results suggest that the structure of the enzyme protein and not its enzymatic activity is involved with induction of differentiation. This view is supported by the demonstration that aldehyde reductase binds specifically to HL60 cells with a KD of 70 nM and that there are 13,000 binding sites/cell. Thus, the extent of differentiation induced by various concentrations of aldehyde reductase are directly related to the expected level of receptor occupancy.  相似文献   

15.
The human promyelocytic cell line HL 60 can be induced to differentiate toward more mature myeloid or monocytic forms by a variety of agents. This process is thought to require several days of exposure to the inducer, thus making it difficult to identify the early cellular changes which are fundamental to the differentiation program, and to relate the induction to phases of the cell cycle. In order to study the kinetics of leukemic cell differentiation we have developed a system for the induction of rapid monocytic maturation in a subpopulation of HL 60 cells. The cells are exposed to 10(-7) M 1,25-dihydroxycholecalciferol for 4 hr in serum-free medium. Subsequent incubation in a complete medium results in cellular differentiation recognizable by several criteria (phagocytosis, nonspecific esterase reaction, adherence to substratum, cell morphology) beginning at 10 hr from the exposure to the inducer. Approximately 20 hr later 30-40% of the cells in culture show the differentiated phenotype and are capable of phagocytosis. The proportion of differentiated cells in culture decreases thereafter. This system has been utilized to study the expression of c-myc oncogene in relation to the kinetics of maturation, and it was found that the inhibition of the expression of this gene precedes the onset of phenotypic differentiation by approximately 8 hr, is transient, and is accompanied by a brief retardation of cell proliferation, which resumes the normal rate within 24 hr of the exposure to the inducer.  相似文献   

16.
17.
The role of sphingosine kinase (SPHK) in the dibutyryl cyclic AMP (dbcAMP)-induced granulocytic differentiation of HL60 cells was investigated. During differentiation, SPHK activity was increased, as were mRNA and protein levels of SPHK1, but not of SPHK2. Pretreatment of HL60 cells with N,N-dimethylsphingosine (DMS), a potent SPHK inhibitor, completely blocked dbcAMP-induced differentiation. The phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK was also increased during dbcAMP-induced differentiation. Pretreatment of HL60 cells with the MEK inhibitor, U0126, but not the p38 MAPK inhibitor, SB203580, completely suppressed dbcAMP-induced ERK1/2 activation and granulocytic differentiation, but did not affect the increase in SPHK activity. DMS inhibited dbcAMP-induced ERK1/2 activation, but had little effect on p38 MAPK activation. DMS had no effect on the dbcAMP-induced membrane translocation of protein kinase C (PKC) isozymes, and PKC inhibitors had no significant effect on ERK activation. The overexpression of wild-type SPHK1, but not dominant negative SPHK1, resulted in high basal levels of ERK1/2 phosphorylation and stimulated granulocytic differentiation in HL60 cells. These data show that SPHK1 participates in the dbcAMP-induced differentiation of HL60 cells by activating the MEK/ERK pathway.  相似文献   

18.
Retinoic acid (RA) and its various synthetic analogs affect mammalian cell growth, differentiation, and apoptosis. Whereas treatment of the human leukemia cell line HL60 with RA results in cellular differentiation, addition of the synthetic retinoid, N-(4-hydroxyphenyl) retinamide (HPR), induces HL60 cells to undergo apoptosis. Moreover, pretreatment of HL60 cells as well as other cell lines (i.e. NIH3T3 cells) with RA blocks HPR-induced cell death. In attempting to discover the underlying biochemical activities that might account for these cellular effects, we found that monodansylcadaverine (MDC), which binds to the enzyme (transamidase) active site of tissue transglutaminase (TGase), eliminated RA protection against cell death and in fact caused RA to become an apoptotic factor, suggesting that the ability of RA to protect against apoptosis is linked to the expression of active TGase. Furthermore, it was determined that expression of exogenous TGase in cells exhibited enhanced GTP binding and transamidation activities and mimicked the survival advantage imparted by RA. We tested whether the ability of this dual function enzyme to limit HPR-mediated apoptosis was a result of the ability of TGase to bind GTP and/or catalyze transamidation and found that GTP binding was sufficient for the protective effect. Moreover, excessive transamidation activity did not appear to be detrimental to cell viability. These findings, taken together with observations that the TGase is frequently up-regulated by environmental stresses, suggest that TGase may function to ensure cell survival under conditions of differentiation and cell stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号