首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theory of reinforcement predicts that natural selection against the production of unfit hybrids favours traits that increase assortative mating. Whether culturally inherited traits, such as bird song, can increase assortative mating by reinforcement is largely unknown. We compared songs of pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) from two hybrid zones of different ages with songs from allopatric populations. Previously, a character divergence in male plumage traits has been shown to reinforce premating isolation in sympatric flycatchers. In contrast, we find that the song of the pied flycatcher has converged towards that of the collared flycatcher (mixed singing). However, a corresponding divergence in the collared flycatcher shows that the species differences in song characters are maintained in sympatry. Genetic analyses suggest that mixed song is not caused by introgression from the collared flycatcher, but rather due to heterospecific copying. Circumstantial evidence suggests that mixed song may increase the rate of maladaptive hybridization. In the oldest hybrid zone where reinforcement on plumage traits is most pronounced, the frequency of mixed singing and hybridization is also lowest. Thus, we suggest that reinforcement has reduced the frequency of mixed singing in the pied flycatcher and caused a divergence in the song of the collared flycatcher. Whether a culturally inherited trait promotes or opposes speciation in sympatry may depend on its plasticity. The degree of plasticity may be genetically determined and accordingly under selection by reinforcement.  相似文献   

2.
In the face of hybridization, species integrity can only be maintained through post-zygotic isolating barriers (PIBs). PIBs need not only be intrinsic (i.e. hybrid inviability and sterility caused by developmental incompatibilities), but also can be extrinsic due to the hybrid's intermediate phenotype falling between the parental niches. For example, in migratory species, hybrid fitness might be reduced as a result of intermediate migration pathways and reaching suboptimal wintering grounds. Here, we test this idea by comparing the juvenile to adult survival probabilities as well as the wintering grounds of pied flycatchers (Ficedula hypoleuca), collared flycatchers (Ficedula albicollis) and their hybrids using stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) in feathers developed at the wintering site. Our result supports earlier observations of largely segregated wintering grounds of the two parental species. The isotope signature of hybrids clustered with that of pied flycatchers. We argue that this pattern can explain the high annual survival of hybrid flycatchers. Hence, dominant expression of the traits of one of the parental species in hybrids may substantially reduce the ecological costs of hybridization.  相似文献   

3.
Evolutionary history of Muscicapidae flycatchers is inferred from nuclear and mitochondrial DNA (mtDNA) sequence comparisons and population genetic analysis of nuclear and mtDNA markers. Phylogenetic reconstruction based on sequences from the two genomes yielded similar trees with respect to the order at which the species split off. However, the genetic distances fitted a nonlinear, polynomial model reflecting diminishing divergence rate of the mtDNA sequences compared to the nuclear DNA sequences. This could be explained by Haldane's rule because genetic isolation might evolve more rapidly on the mitochondrial rather than the nuclear genome in birds. This is because hybrid sterility of the heterogametic sex (females) would predate that of the homogametic sex (males), leading to sex biased introgression of nuclear genes. Analyses of present hybrid zones of pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) may indicate a slight sexual bias in rate of introgression, but the introgression rates were too low to allow proper statistical analyses. It is suggested, however, that the observed deviation from linearity can be explained by a more rapid mutational saturation of the mtDNA sequences than of the nuclear DNA sequences, as supported by analyses of third codon position transversions at two protein coding mtDNA genes. A phylogeographic scenario for the black and white flycatcher species is suggested based on interpretation of the genetic data obtained. Four species appear to have diverged from a common ancestor relatively simultaneously during the Pleistocene. After the last glaciation period, pied and collared flycatchers expanded their breeding ranges and eventually came into secondary contact in Central and Eastern Europe and on the Baltic Isles.  相似文献   

4.
In many species, individuals do not attain their full adult coloration until one or several years after reaching sexual maturity, and this signaling of juvenile status is thought to enable young individuals to avoid aggression from older, dominant conspecifics. We propose that hybridization may be one of several costs and benefits associated with such delayed maturation. We tested this idea in a hybrid zone of collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers on the Baltic islands of Oland and Gotland. One-year-old (subadult) male collared flycatchers differed from older birds in many plumage traits, and approached male pied flycatchers in phenotype. On both islands, subadult male collared flycatchers hybridized at a higher rate than adults. Mate-choice experiments in aviaries suggest that this difference is at least partly due to female pied flycatchers having a preference for subadults when constrained to choose a heterospecific mate. Because novel morphologies are often derived from changes in ontology, juvenile forms may resemble adults of closely related taxa. When such juveniles are reproductively mature, their phenotypic similarity to the adults of closely related species may increase their risk of hybridization.  相似文献   

5.
Ecological speciation predicts that hybrids should experience relatively low fitness in the local environments of their parental species. In this study, we performed a translocation experiment of nestling hybrids between collared and pied flycatchers into the nests of conspecific pairs of their parental species. Our aim was to compare the performance of hybrids with purebred nestlings. Nestling collared flycatchers are known to beg and grow faster than nestling pied flycatchers under favorable conditions, but to experience higher mortality than nestling pied flycatchers under food limitation. The experiment was performed relatively late in the breeding season when food is limited. If hybrid nestlings have an intermediate growth potential and begging intensity, we expected them to beg and grow faster, but also to experience lower survival than pied flycatchers. In comparison with nestling collared flycatchers, we expected them to beg and grow slower, but to survive better. We found that nestling collared flycatchers indeed begged significantly faster and experienced higher mortality than nestling hybrids. Moreover, nestling hybrids had higher weight and tended to beg faster than nestling pied flycatchers, but we did not detect a difference in survival between the latter two groups of nestlings. We conclude that hybrid Ficedula nestlings appear to have a better intrinsic adaptation to food limitation late in the breeding season compared with nestling collared flycatchers. We discuss possible implications for gene flow between the two species.  相似文献   

6.
Character displacement can reduce costly interspecific interactions between young species. We investigated the mechanisms behind divergence in three key traits-breeding habitat choice, timing of breeding, and plumage coloration-in Ficedula flycatchers. We found that male pied flycatchers became expelled from the preferred deciduous habitat into mixed forest as the superior competitor, collared flycatchers, increased in numbers. The peak in food abundance differs between habitats, and the spatial segregation was paralleled by an increased divergence in timing of breeding between the two species. Male pied flycatchers vary from brown to black with brown coloration being more frequent in sympatry with collared flycatchers, a pattern often proposed to result from selection against hybridization, that is, reinforcement. In contrast to this view, we show that brown male pied flycatchers more often hybridize than black males. Male pied flycatcher plumage coloration influenced the territory obtained in areas of co-occurrence with collared flycatchers, and brown male pied flycatchers experienced higher relative fitness than black males when faced with heterospecific competition. We suggest that allopatric divergence in resource defense ability causes a feedback loop at secondary contact where male pied flycatchers with the most divergent strategy compared to collared flycatchers are favored by selection.  相似文献   

7.
Given that population divergence in sexual signals is an important prerequisite for reproductive isolation, a key prediction is that cases of signal convergence should lead to hybridization. However, empirical studies that quantitatively demonstrate links between phenotypic characters of individuals and their likelihood to hybridize are rare. Here we show that song convergence between sympatric pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) influence social and sexual interactions between the two species. In sympatry, the majority of male pied flycatchers (65%) include various parts of collared flycatcher song in their song repertoire (but not vice versa). Playback experiments on male interactions demonstrate that male collared flycatchers respond similarly to this 'mixed' song as to conspecific song. Long-term data on pairing patterns show that males singing a converged song attract females of the other species: female collared flycatchers only pair with male pied flycatchers if the males sing the mixed song type. From the perspective of a male pied flycatcher, singing a mixed song type is associated with 30% likelihood of hybridization. This result, combined with our estimates of the frequency of mixed singers, accurately predicts the observed occurrence of hybridization among male pied flycatchers in our study populations (20.45% of 484 pairs; predicted 19.5%). Our results support the suggestion that song functions as the most important prezygotic isolation mechanism in many birds.  相似文献   

8.
While sexual selection is generally assumed to quickly cause or strengthen prezygotic barriers between sister species, its role in causing postzygotic isolation, through the unattractiveness of intermediate hybrids, is less often examined. Combining 24 years of pedigree data and recently developed species-specific molecular markers from collared (Ficedula albicollis) and pied (Ficedula hypoleuca) flycatchers and their hybrids, we were able to quantify all key components of fitness. To disentangle the relative role of natural and sexual selection acting on F1 hybrid flycatchers, we estimated various fitness components, which when combined represent the total lifetime reproductive success of F1 hybrids, and then compared the different fitness components of F1 hybrids to that of collared flycatchers. Female hybrid flycatchers are sterile, with natural selection being the selective force involved, but male hybrids mainly experienced a reduction in fitness through sexual selection (decreased pairing success and increased rate of being cuckolded). To disentangle the role of sexual selection against male hybrids from a possible effect of genetic incompatibility (on the rate of being cuckolded), we compared male hybrids with pure-bred males expressing intermediate plumage characters. Given that sexual selection against male hybrids is a result of their intermediate plumage, we expect these two groups of males to have a similar fitness reduction. Alternatively, hybrids have reduced fitness owing to genetic incompatibility, in which case their fitness should be lower than that of the intermediate pure-bred males. We conclude that sexual selection against male hybrids accounts for approximately 75% of the reduction in their fitness. We discuss how natural and sexual selection against hybrids may have different implications for speciation and conclude that reinforcement of reproductive barriers may be more likely when there is sexual selection against hybrids.  相似文献   

9.
With the access to draft genome sequence assemblies and whole‐genome resequencing data from population samples, molecular ecology studies will be able to take truly genome‐wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single‐nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10‐fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later‐generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.  相似文献   

10.
The pied flycatcher is one of the most phenotypically variable bird species in Europe. The geographic variation in phenotypes has often been attributed to spatial variation in selection regimes that is associated with the presence or absence of the congeneric collared flycatcher. Spatial variation in phenotypes could however also be generated by spatially restricted gene flow and genetic drift. We examined the genetic population structure of pied flycatchers across the breeding range and applied the phenotypic Q ST ( P ST)– F ST approach to detect indirect signals of divergent selection on dorsal plumage colouration in pied flycatcher males. Allelic frequencies at neutral markers were found to significantly differ among populations breeding in central and southern Europe whereas northerly breeding pied flycatchers were found to be one apparently panmictic group of individuals. Pairwise differences between phenotypic ( P ST) and neutral genetic distances ( F ST) were positively correlated after removing the most differentiated Spanish and Swiss populations from the analysis, suggesting that genetic drift may have contributed to the observed phenotypic differentiation in some parts of the pied flycatcher breeding range. Differentiation in dorsal plumage colouration however greatly exceeded that observed at neutral genetic markers, which indicates that the observed pattern of phenotypic differentiation is unlikely to be solely maintained by restricted gene flow and genetic drift.  相似文献   

11.
Understanding speciation depends on an accurate assessment of the reproductive barriers separating newly diverged populations. In several taxonomic groups, prezygotic barriers, especially preferences for conspecific mates, are thought to play the dominant role in speciation. However, the importance of postzygotic barriers (i.e., low fitness of hybrid offspring) may be widely underestimated. In this study, we examined how well the widely used proxy of postzygotic isolation (reproductive output of F1 hybrids) reflects the long‐term fitness consequences of hybridization between two closely related species of birds. Using 40 species‐specific single nucleotide polymorphism (SNP) markers, we genotyped a mixed population of collared and pied flycatchers (Ficedula albicollis and F. hypoleuca) to identify grand‐ and great grand‐offspring from interspecific crosses to derive an accurate, multigeneration estimate of postzygotic isolation. Two independent estimates of fitness show that hybridization results in 2.4% and 2.7% of the number of descendents typical of conspecific pairing. This postzygotic isolation was considerably stronger than estimates based on F1 hybrids. Our results demonstrate that, in nature, combined selection against hybrids and backcrossed individuals may result in almost complete postzygotic isolation between two comparatively young species. If these findings are general, postzygotic barriers separating hybridizing populations may be much stronger than previously thought.  相似文献   

12.
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.  相似文献   

13.
Theoretical and empirical data suggest that genes located on sex chromosomes may play an important role both for sexually selected traits and for traits involved in the build‐up of hybrid incompatibilities. We investigated patterns of genetic variation in 73 genes located on the Z chromosomes of two species of the flycatcher genus Ficedula, the pied flycatcher and the collared flycatcher. Sequence data were evaluated for signs of selection potentially related to genomic differentiation in these young sister species, which hybridize despite reduced fitness of hybrids. Seven loci were significantly more divergent between the two species than expected under neutrality and they also displayed reduced nucleotide diversity, consistent with having been influenced by directional selection. Two of the detected candidate regions contain genes that are associated with plumage coloration in birds. Plumage characteristics play an important role in species recognition in these flycatchers suggesting that the detected genes may have been involved in the evolution of sexual isolation between the species.  相似文献   

14.
Because they are ubiquitous and typically reduce the fitness of hosts, parasites may play important roles in hybrid zone dynamics. Despite much work on herbivores and hybrid plants, the effect of parasites on the fitness of animal hybrids is poorly known. In an attempt to partly fill this gap, we examined the prevalence of avian haemosporidians Haemoproteus in a hybrid zone between collared Ficedula albicollis and pied flycatchers F. hypoleuca . 40 species-informative genetic markers allowed us to identify F1 hybrids, thus avoiding problems inherent in many studies that group hybrid genotypes. Furthermore, naturally occurring extra-pair paternity allowed us to test the immune responses of pure and hybrid nestlings to a novel antigen (phytohaemagglutinin) in a shared environment. In contrast to previous suggestions that animal hybrids may more often display resistance against parasites than plant hybrids, F1 hybrids exhibited prevalence of parasitism and immune responses that were intermediate between the two parental species. We also detected differences between the two parental species in their prevalence of infection, with the competitively dominant species (collared flycatcher) being less often infected by Haemoproteus . Overall, our results contribute to other recent data supporting the idea that the resistance of animals to parasites is variously and unpredictably affected by hybridization, and that there is a concordance in the general patterns observed in plants and animals. Haemosporidians in avian hybrids provide a useful system for investigating the interactions between hosts and parasites that characterize host contact zones.  相似文献   

15.
Borge T  Webster MT  Andersson G  Saetre GP 《Genetics》2005,171(4):1861-1873
In geographic areas where pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breed in sympatry, hybridization occurs, leading to gene flow (introgression) between the two recently diverged species. Notably, while such introgression is observable at autosomal loci it is apparently absent at the Z chromosome, suggesting an important role for genes on the Z chromosome in creating reproductive isolation during speciation. To further understand the role of Z-linked loci in the formation of new species, we studied genetic variation of the two species from regions where they live in allopatry. We analyzed patterns of polymorphism and divergence in introns from 9 Z-linked and 23 autosomal genes in pied and collared flycatcher males. Average variation on the Z chromosome is greatly reduced compared to neutral expectations based on autosomal diversity in both species. We also observe significant heterogeneity between patterns of polymorphism and divergence at Z-linked loci and a relative absence of polymorphisms that are shared by the two species on the Z chromosome compared to the autosomes. We suggest that these observations may indicate the action of recurrent selective sweeps on the Z chromosome during the evolution of the two species, which may be caused by sexual selection acting on Z-linked genes. Alternatively, reduced variation on the Z chromosome could result from substantially higher levels of introgression at autosomal than at Z-linked loci or from a complex demographic history, such as a population bottleneck.  相似文献   

16.
Competition‐driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on‐going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition‐driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future “voluntarily” altered immigration patterns and possibly strengthened habitat isolation through reinforcement.  相似文献   

17.
The collared flycatcher (Ficedula albicollis) and the pied flycatcher (F. hypoleuca) hybridize where their geographic ranges overlap. Restriction fragment comparison of 5% of the mitochondrial genome showed a sequence divergence of 10% between these flycatcher species. This degree of sequence divergence between a closely related pair of bird species is unusually high and contrasts with the low level of divergence between F. albicollis and F. hypoleuca in nuclear genes (Nei's D = 0.0006) revealed by enzyme electrophoresis. The low nuclear differentiation is explained by sex biassed gene flow and introgression in nuclear genes (via fertile male hybrids), while the high mitochondrial DNA sequence divergence is preserved by sterility of female hybrids, which prevents mitochondrial introgression. This pattern is in accordance with Haldane's rule and is supported by field data on hybrid fertility. The high mtDNA differentiation could be explained by transfer of mitochondrial DNA from a third species during a past period of hybridization.  相似文献   

18.
When hybridization is maladaptive, species‐specific mate preferences are selectively favored, but low mate availability may constrain species‐assortative pairing. Females paired to heterospecifics may then benefit by copulating with multiple males and subsequently favoring sperm of conspecifics. Whether such mechanisms for biasing paternity toward conspecifics act as important reproductive barriers in socially monogamous vertebrate species remains to be determined. We use a combination of long‐term breeding records from a natural hybrid zone between collared and pied flycatchers (Ficedula albicollis and F. hypoleuca), and an in vitro experiment comparing conspecific and heterospecific sperm performance in female reproductive tract fluid, to evaluate the potential significance of female cryptic choice. We show that the females most at risk of hybridizing (pied flycatchers) frequently copulate with multiple males and are able to inhibit heterospecific sperm performance. The negative effect on heterospecific sperm performance was strongest in pied flycatcher females that were most likely to have been previously exposed to collared flycatcher sperm. We thus demonstrate that a reproductive barrier acts after copulation but before fertilization in a socially monogamous vertebrate. While the evolutionary history of this barrier is unknown, our results imply that there is opportunity for it to be accentuated via a reinforcement‐like process.  相似文献   

19.
Parasites may influence the outcome of interspecific competition between closely related host species through lower parasite virulence in the host with which they share the longer evolutionary history. We tested this idea by comparing the prevalence of avian malaria (Haemosporidia) lineages and their association with survival in pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breeding in a recent contact zone on the Swedish island of Öland. A nested PCR protocol amplifying haemosporidian fragments of mtDNA was used to screen the presence of malaria lineages in 1048 blood samples collected during 6 years. Competitively inferior pied flycatchers had a higher prevalence of blood parasites, including the lineages that were shared between the two flycatcher species. Multistate mark–recapture models revealed a lower survival of infected versus uninfected female pied flycatchers, while no such effects were detected in male pied flycatchers or in collared flycatchers of either sex. Our results show that a comparatively new host, the collared flycatcher, appears to be less susceptible to a local northern European malarial lineage where the collared flycatchers have recently expanded their distribution. Pied flycatchers experience strong reproductive interference from collared flycatchers, and the additional impact of species‐specific blood parasite effects adds to this competitive exclusion. These results support the idea that parasites can strongly influence the outcome of interspecific competition between closely related host species, but that the invading species need not necessarily be more susceptible to local parasites.  相似文献   

20.
At secondary contact closely related species may both compete over similar resources and/or hybridize. Simulation models suggest that hybridization increases the risk of extinction beyond the risk resulting from interspecific competition alone, but such combined effects are rarely studied empirically. Here, we use detailed records on pairing patterns, breeding success, local recruitment and immigration collected during 8?years (2002–2009) to investigate the underlying mechanism of the rapid displacement of pied flycatchers by collared flycatchers on the Swedish island of ?land. We found no differences in average reproductive success or reproductive lifespan between the two species. However, we show that young male pied flycatchers failed to establish new territories as the density of male collared flycatchers increased. In addition, as the relative frequency of collared flycatchers increased, the risk of hybridization dramatically increased for female pied flycatchers, which speeds up the exclusion process since there is a high fitness cost associated with hybridization between the two species. In a nearby control area, within the same island, where pied flycatchers breed in the absence of collared flycatchers, no decline in the number of breeding pairs was observed during the same period of time. Our results demonstrate the crucial importance of studying the combined effects of various types of heterospecific interactions to understand and predict the ecological and evolutionary implications of secondary contact between congeneric species. These findings are particularly interesting in the light of recent climate change since the expected range shifts of many taxa will increase competitive and sexual interactions between previously separated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号