首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interactions between two ectomycorrhizal fungal species, Piloderma croceum Erikss. and Hjortst. and Piloderma sp. 1 (found to colonise spruce roots and wood ash granules in the field), were investigated in wood ash amended substrates. The comparative ability of these fungi to colonise roots of non-mycorrhizal spruce (Picea abies (L.) Karst.) seedlings was studied in relation to factorial combinations of wood ash and N fertilisation. Non-mycorrhizal spruce seedlings (bait seedlings) were planted together with spruce seedlings colonised by P. croceum or Piloderma sp. 1. The growth substrate was a sand-peat mixture with wood ash or no ash and supplied with two levels of N, so that four substrate combinations were obtained. Piloderma sp. 1 mycelia colonised around 60% of the fine roots of bait seedlings in ash treatments regardless of N level and around 20-26% in treatments without ash. P. croceum only colonised 8% of the root tips in the presence of ash but 56% of the root tips in the low-N treatment without ash. However, in the high-N treatment without ash the colonisation level was reduced to around 30%. Total numbers of root tips per seedling did not vary significantly between the treatments. Possible reasons for the competitive advantage of Piloderma sp. 1 in wood ash fertilised substrate are discussed.  相似文献   

2.
The aim of this study was to assess belowground occurrence, persistence and possible impact of the biocontrol agent Phlebiopsis gigantea (Fr.) Jülich on soil fungi. Sampling of soil and roots of Picea abies (L.) H. Karst. was carried out at 12 P. gigantea-treated and five nontreated control sites representing 1- to 60-month-old clear-cuts and thinned forest sites in Finland and Latvia. The 454-sequencing of ITS rRNA from fine roots, humus and mineral soil resulted in 8626 high-quality fungal sequences. Phlebiopsis gigantea represented 1.3% of all fungal sequences and was found in 14 treated and nontreated sites and in all three substrates. In different substrates, the relative abundance of P. gigantea at stump treatment sites either did not differ significantly or was significantly lower than in nontreated controls. No significant correlation was found between the time elapsed since the tree harvesting and/or application of the biocontrol and abundance of P. gigantea in different substrates. In conclusion, the results demonstrate that P. gigantea occasionally occurs belowground in forest ecosystems but that stump treatment with the biocontrol agent has little or no impact on occurrence and persistence of P. gigantea belowground, and consequently no significant impact on soil fungi.  相似文献   

3.
Non-mycorrhizal spruce seedlings (Picea abies Karst.) and spruce seedlings colonized with Lactarius rufus (Scop.) Fr. or two strains of Paxillits involutus (Batsch) Fr. were grown in an axenic silica sand culture system with frequently renewed nutrient solution. After successful mycorrhizal colonization, the seedlings were exposed to 1 μM PbCI2 for 19 weeks. The degree of infection in all of the mycorrhizal treatments approached 100% during the experiment and was not affected by exposure to Pb. However, the number of root tips per root dry weight and the shoot: root ratio, both in the non-mycorrhizal and the mycorrhizal seedlings, had decreased after the 19 week treatment with PbCl2 Using X-ray microanalysis, the distribution and concentration of Pb in the tissues of mycorrhizal and non-mycorrhizal root tips were compared. In the mycorrhizae of seedlings exposed to Pb no significant accumulation of Pb in the hyphal mantle or in fungal cell walls of the Hartig net were detected. Lead accumulated primarily in the cortex cell walls both of non-mycorrhizal and mycorrhizal root tips. No significant difference of Pb concentrations in root cortex cell walls of non-mycorrhizal and mycorrhizal seedlings was found; except for seedlings colonized with Paxillus involutus strain 537. However, at the endodermis no effect of mycorrhizal fungal colonization on the Pb tissue concentration was detected. The presence of the fungal sheath did not prevent Pb from reaching the root cortex. The endodermis acted as a barrier to Pb radial transport in both mycorrhizal and non-mycorrhizal seedling roots.  相似文献   

4.
Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13C/15N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13C/15N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.  相似文献   

5.
以1、2、3年生的楸树实生苗和嫁接苗(梓树砧木)根系为研究对象,通过对ITS rDNA区域标记扩增子的Illumina MiSeq测序,分析不同苗龄楸树实生苗和嫁接苗根相关真菌的结构组成和多样性。获得根相关真菌OTU共842个,分属4门、24纲、70目、134科、233属、347种;丛枝菌根真菌(arbuscular mycorrhizal fungi)AMF-OTU共42个,分属1门、1纲、3目、3科、3属、13种。根相关真菌和AMF的OTU数量、丰度和多样性在实生苗中均随苗龄的增加而降低,而在嫁接苗中则随着苗龄的增加而增加。门水平上,实生苗与嫁接苗根相关真菌的优势菌都是子囊菌门Ascomycota、担子菌门Basidiomycota和接合菌门Zygomycota,但它们的相对丰度有所差异;属水平上,实生苗和嫁接苗根相关真菌的优势菌种在组成和数量上都具有一定的差异性。楸树根相关真菌拥有3种营养模式和12个生态功能群,其中实生苗根系中病理营养型真菌的比例大于嫁接苗,腐生营养型则差异不大,而共生营养型则小于嫁接苗。生态功能群分析显示大多数楸树根系真菌表现出多种生存策略,部分真菌可以在植物-真菌-动物中跨界侵染。该研究可为楸树根相关真菌的利用提供一定的理论依据和基础。  相似文献   

6.
Saprotrophic fungi play an important role in ecosystem functioning and plant performance, but their abundance in intensively managed arable soils is low. Saprotrophic fungal biomass in arable soils can be enhanced with amendments of cellulose-rich materials. Here, we examined if sawdust-stimulated saprotrophic fungi extend their activity to the rhizosphere of crop seedlings and influence the composition and activity of other rhizosphere and root inhabitants. After growing carrot seedlings in sawdust-amended arable soil, we determined fungal and bacterial biomass and community structure in roots, rhizosphere and soil. Utilization of root exudates was assessed by stable isotope probing (SIP) following 13CO2-pulse-labelling of seedlings. This was combined with analysis of lipid fatty acids (PLFA/NLFA-SIP) and nucleic acids (DNA-SIP). Sawdust-stimulated Sordariomycetes colonized the seedling's rhizosphere and roots and actively consumed root exudates. This did not reduce the abundance and activity of bacteria, yet higher proportions of α-Proteobacteria and Bacteroidia were seen. Biomass and activity of mycorrhizal fungi increased with sawdust amendments, whereas exudate consumption and root colonization by functional groups containing plant pathogens did not change. Sawdust amendment of arable soil enhanced abundance and exudate-consuming activity of saprotrophic fungi in the rhizosphere of crop seedlings and promoted potential beneficial microbial groups in root-associated microbiomes.  相似文献   

7.
Fruiting body guided sequence analysis of mycorrhizal root-tip mycelia is a powerful yet relatively sparsely explored method for species-level identification of mycorrhizal fungi. It is used in this study to indicate mycorrhizal associations in the corticioid (resupinate) genus Sistotrema of the cantharelloid clade through phylogenetic analysis of the ITS and nuLSU rDNA regions of two spatiotemporally co-occurring Sistotrema fruiting bodies and ectomycorrhizal root tips. The genus Sistotrema is confirmed to be polyphyletic, and the mycorrhizal species form a strongly supported monophyletic clade together with the stipitate genus Hydnum. The remaining lineages of Sistotrema may well be saprotrophic, the nutritional mode traditionally attributed to the genus, but the phylogenetic analyses show that they should be excluded from Sistotrema. The cantharelloid clade contains several mycorrhizal genera, but no symbiotic associations have previously been demonstrated for Sistotrema.  相似文献   

8.
We determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types. Determination of total and INT-active biomass has increased our understanding of the role of spatial compartmentalization of bacteria and fungi in rhizosphere carbon flow.  相似文献   

9.
Haskins KE  Gehring CA 《Oecologia》2005,145(1):123-131
The ability of seedlings to establish can depend on the availability of appropriate mycorrhizal fungal inoculum. The possibility that mycorrhizal mutualists limit the distribution of seedlings may depend on the prevalence of the plant hosts that form the same type of mycorrhizal association as the target seedling species and thus provide inoculum. We tested this hypothesis by measuring ectomycorrhizal (EM) fine root distribution and conducting an EM inoculum potential bioassay along a gradient of EM host density in a pinyon–juniper woodland where pinyon is the only EM fungal host while juniper and other plant species are hosts for arbuscular mycorrhizal (AM) fungi. We found that pinyon fine roots were significantly less abundant than juniper roots both in areas dominated aboveground by juniper and in areas where pinyon and juniper were co-dominant. Pinyon seedlings establishing in pinyon–juniper zones are thus more likely to encounter AM than EM fungi. Our bioassay confirmed this result. Pinyon seedlings were six times less likely to be colonized by EM fungi when grown in soil from juniper-dominated zones than in soil from either pinyon–juniper or pinyon zones. Levels of EM colonization were also reduced in seedlings grown in juniper-zone soil. Preliminary analyses indicate that EM community composition varied among sites. These results are important because recent droughts have caused massive mortality of mature pinyons resulting in a shift towards juniper-dominated stands. Lack of EM inoculum in these stands could reduce the ability of pinyon seedlings to re-colonize sites of high pinyon mortality, leading to long-term vegetation shifts.  相似文献   

10.
Avis PG  Charvat I 《Mycologia》2005,97(2):329-337
The inoculum of ectomycorrhizal (EM) fungi was examined in a 16 y long nitrogen fertilization experiment maintained in a temperate oak savanna. To measure EM fungal inoculum, bur oak seedlings were grown in three types of bioassays: (i) intact soil cores that measure inoculum such as spores, mycelia and mycorrhizal roots; (ii) resistant propagule bioassays that measure inoculum types resistant to soil drying; and (iii) previously mycorrhizal root bioassays that measure the ability of EM fungi to colonize new roots from mycorrhizal roots. Colonization of bur oak seedlings was characterized by morphotyping and where necessary by restriction analysis and internal transcribed spacer (ITS) sequencing. Fourteen morphotypes were found in intact soil core bioassays with species of Cortinarius, Cenococcum and Russula abundant. Five morphotypes were found in resistant propagule bioassays with Cenococcum, a thelephoroid morphotype and a Wilcoxina-like ascomycete abundant and frequent. In intact soil core bioassays total percent root colonization and number of morphotypes were not affected by N supply in 2000 and 2001. However the composition of EM fungi colonizing oak seedling roots was different with increased N supply such that Russula spp. (primarily Russula aff. amoenolens) were most abundant at the highest level of N supply. Dominant Russula spp. did not colonize any roots in resistant propagule bioassays but did colonize oak seedling roots from previously mycorrhizal roots. Results suggest that in this savanna N supply can influence the kinds of inoculum propagules present and thereby might affect the dynamics of ectomycorrhizal communities by differentially influencing reproductive and colonization strategies.  相似文献   

11.
Because fine roots tend to be concentrated at the soil surface, exposure to dry surface soil can have a large influence on patterns of root growth, death and respiration. We studied the effects of arbuscular mycorrhizas (AM) formation on specific root length (SRL), respiration and mortality of fine roots of bearing red grapefruit (Citrus paradisi Macf.) trees on Volkamer lemon (C. volkameriana Tan. & Pasq.) rootstock exposed to drying soil. For each tree, the fine roots were removed from two woody lateral roots, the roots were surface sterilized and then each woody root was placed in a separate pair of vertically divided and independently irrigated soil compartments. The two split-pot systems were filled with sterilized soil and one was inoculated with arbuscular mycorrhizal fungi (Glomus etunicatum/G. intraradices). New fine lateral roots that emerged from the woody laterals were permitted to grow inside the pots over a 10-month period. Irrigation was then removed from the top compartment for a 15-week period. At the end of the study, roots inoculated with AM fungi exhibited about 20% incidence of AM formation, whereas the uninoculated roots were completely void of AM fungi. Arbuscular mycorrhizal roots exhibited lower SRL, lower root/soil respiration and about 10% lower fine root mortality than nonmycorrhizal roots after 15 weeks of exposure to dry surface soil. This study demonstrates the feasibility of examining mycorrhizal effects on the fine roots of adult trees in the field using simple inexpensive methods.  相似文献   

12.
Organic acids produced by fungi have been proposed to have many roles in wood-decay processes, lignocellulose degradation or plant pathogenesis involving saprotrophic or pathogenic fungi, as well as in nutrient acquisition and metal detoxification involving mycorrhizal or rhizosphere-inhabiting fungi. In comparison with other fungi, a considerable body of work has been devoted to the comprehension of biosynthesis pathways in fungi involved in industrial production of organic acids, and also in those involved in wood-decay processes and pathogenicity. In this review we therefore focus on information available from these different types of low-molecular weight organic acid (LMWOA) producing fungi in order to better understand the environmental cues involved in regulating production of LMWOAs.  相似文献   

13.
Climate change (elevated atmospheric CO2, and altered air temperatures, precipitation amounts and seasonal patterns) may affect ecosystem processes by altering carbon allocation in plants, and carbon flux from plants to soil. Mycorrhizal fungi, as carbon sinks, are among the first soil biota to receive carbon from plants, and thereby influence carbon release from plants to soil. One step in this carbon release is via fine root and mycorrhizal turnover. It is necessary to know the lifetime and temporal occurrence of roots and mycorrhizae to determine the capacity of the soil ecosystem to sequester carbon assimilated aboveground. In this study, ponderosa pine (Pinus ponderosa Laws) seedlings were grown under three levels of atmospheric CO2 (ambient, 525 and 700 mol CO2 mol-1) and three levels of annual nitrogen additions (0,100 and 200 kg N ha-1) in open-top chambers. At a two-month frequency during 18 months, we observed ectomycorrhizal root tips observed using minirhizotron tubes and camera. The numbers of new mycorrhizal root tips, the numbers of tips that disappeared between two consecutive recording events, and the standing crop of tips at each event were determined. There were more mycorrhizal tips of all three types seen during the summer compared with other times of the year. When only the standing crop of mycorrhizal tips was considered, effects of the CO2 and N addition treatments on carbon allocation to mycorrhizal tips was weakly evident. However, when the three types of tips were considered collectively, tips numbers flux of carbon through mycorrhizae was greatest in the: (1) high CO2 treatment compared with the other CO2 treatments, and (2) intermediate N addition treatment compared with the other N addition treatments. A survival analysis on the entire 18 month cohort of tips was done to calculate the median lifetime of the mycorrhizal root tips. Average median lifetime of the mycorrhizal tips was 139 days and was not affected by nitrogen and CO2 treatments.  相似文献   

14.
We investigated belowground responses of Nothofagus alpina seedlings to post-fire conditions during natural regeneration after a wildfire in Chile, focusing on mycorrhizal community and root architecture. The complete root systems of 2-year-old N. alpina seedlings were extracted from a post-fire site with natural regeneration and compared to roots of seedlings from undisturbed forest nearby. Mycorrhizal morphotype richness was determined in each seedling. Morphometric parameters of tertiary root structure and dry biomass of whole root systems were determined in 5 cm vertical intervals and in four lateral root classes. With 43.5% of colonized vital mycorrhizal root tips, the Basidiomycete Descolea antarctica was the most abundant fungal symbiont on post-fire seedlings. Tertiary root morphology of these seedlings was distinct from control plants and characterized by a deep-reaching tap root with rather evenly distributed lateral branches whereas seedlings from the undisturbed site had shallower root systems with most lateral roots concentrated in the upper soil layers. Post-fire seedlings had more mycorrhizal rootlets and mycorrhiza-bearing third order lateral roots than control plants which was expressed in a 34% higher total root number but only a 10% higher total root biomass, although both values were not statistically significant. A major part of these fine roots in seedlings from burnt forest was found in deeper soil horizons, compared to the seedlings from undisturbed forest. According to our results, post-fire conditions clearly favour Descolea antarctica as an early ectomycorrhizal colonizer of Nothofagus seedlings at the studied site. As no significant changes in soil chemistry could be observed at the burnt site, the deep-reaching tertiary root architecture of these seedlings may be interpreted as a response to other abiotic factors like reduced moisture in surface soil.  相似文献   

15.
锦绣杜鹃菌根真菌rDNA ITS序列分析及接种效应研究   总被引:1,自引:0,他引:1  
利用rDNA ITS序列对锦绣杜鹃菌根真菌的16个菌株进行了分类分析。根据菌株ITS序列全长计算各菌株间序列相似度和遗传距离,并与GenBank中最相似菌株序列构建系统发育树。结果表明:16个菌株在系统树上聚为3个大分支。其中7个菌株在支持率为100%的基础上与树粉孢属真菌Oidiodendron sp.聚为一类;2个菌株与未鉴定的杜鹃花科植物根系真菌unidentified root associated fungi聚为一类,支持率为100%;其他7个菌株在98%的支持率上与几种未命名的欧石楠类菌根真菌  相似文献   

16.
We documented the patterns of root occupancy by Glomalean and ectomycorrhizal (EM) fungi in Quercus agrifolia, and host plant responses to inoculation with each mycorrhizal type alone or in combination. Glomalean hyphae, coils and vesicles, and EM root tips were recorded. Colonization patterns conformed to a succession from Glomalean and EM fungi in 1-year-old seedlings to predominantly EM in saplings (>11 years old); both mycorrhizal types were rarely detected within the same root segment. Inoculation of Q. agrifolia seedlings with EM or Glomalean fungi (AM) alone or in combination (EM+AM) altered the cost:benefit relationship of mycorrhizas to the host plant. Seedling survival, plant biomass, foliar nitrogen (N), and phosphorus (P) status were greatest in EM- or AM-only inoculated seedlings. Seedlings inoculated with both mycorrhizal types (AM+EM) exhibited the lowest survival rates, biomass, foliar N, and P levels. Roots of these plants were highly colonized by both EM (38% root length colonized) and Glomalean fungi (34%). Because these levels of colonization were similar to those detected in 1-year-old field seedlings, the presence of both mycorrhizal types may be a carbon cost and, in turn, less beneficial to oaks during establishment in the field. However, the shift to EM colonization in older plants suggests that mycorrhizal effects may become positive with time.  相似文献   

17.
Demography and fungal diversity of the belowground ectomycorrhizal community in a chronosequence of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northumberland, Northern England, were analysed; mycorrhizal root samples were taken from 6-, 12-, 30- and 40-year-old stands, and fungal fruiting bodies were collected in autumn to complement the survey. Naturally germinated seedlings less than 1 year of age (taken from the 30-year-old stand) were also examined. A total of 118,000 mycorrhizal root tips were extracted from 40 soil cores (ten per age class) and from the complete root systems of 25 seedlings and separated into active and senescent root tips according to their morphology and anatomy. Active tips were distinguished according to their mycobionts which were characterised and identified microscopically. Although almost 100% of all fine roots were mycorrhizal, EM fungal diversity throughout the chronosequence was low, consisting of a total of 16 species of which three were only found as fruiting bodies. Of the six mycobionts found most regularly below ground, Tylospora fibrillosa was the most common, colonising about 70% of all root tips and more than 90% of those of seedlings and young trees. Root density and mycorrhizal diversity increased, but percentage of vital root tips decreased with increasing tree age, levelling off in the 30- and 40-year-old stand. Among the five subdominant fungal species, Dermocybe crocea was found to have its peak of distribution in the 12-year-old stand and Russula emetica, Lactarius rufus, Hymenoscyphus ericae agg. and the unidentified Piceirhiza sulfo-incrustata in the 30- and 40-year-old stands. The possible correlations between the mycorrhizal community structure and biotic and abiotic factors are discussed.  相似文献   

18.
Spruce seedlings ( Picea abies (L.) Karst.) colonized with Lactarius rufus (Scop.) Fr. or Lactarius theiogalus Fr. were grown in an axenic silica sand culture system with frequently renewed nutrient solution. After successful mycorrhizal colonization the seedlings were exposed to 800 μ M Al(NO3)3 (pH 3.9) for 13 or 17 weeks. Concentrations of Al, Mg, and Ca in the tissues of the mycorrhizal root tips were determined by X-ray microanalysis. After 13 or 17 weeks of exposure to Al, high Al concentrations were found in cell walls of all mycorrhizal tissues except the stele tissues. Compared to the controls Mg levels in most of the mycorrhizal structures were reduced by Al treatment. Calcium levels in cortex cell walls of root tips colonized with L. rufus were reduced by exposure to Al. However, in cell walls of the stele Ca levels were significantly increased. No differences in Al or Mg levels were detected in structures of mycorrhizal and non-mycorrhizal root tips from the same individual seedlings. These results suggest that (1) the endodermis is the primary barrier to radial Al transport and (2) the presence of a hyphal sheath did not prevent Al from reaching the root cortex and from displacing Mg and Ca.  相似文献   

19.
Fungal colonization of litter has been described mostly in terms of fructification succession in the decomposition process or the process of fungal ligninolysis. No studies have been conducted on litter colonization by arbuscular mycorrhizal fungi (AMF) and their relationship with the presence of saprotrophic fungi. The aim of the present study was to evaluate the relationships that exist in simultaneous leaf litter colonization by AMF and saprotrophic fungi and the relationships between rates of litter and associated root colonization by AMF at different soil depths. We selected Eugenia sp. and Syzygium sp. in a riparian tropical forest, with an abundant production of litter (O horizon), we evaluated litter and root colonization at different depths, its C:N ratios, and the edaphic physico-chemical parameters of the A horizon immediately below the litter layer. Litter colonization by saprotrophic fungi and AMF increased with depth, but the saprotrophic fungal colonization of some litter fragments decreased in the lowermost level of the litter while AMF litter colonization continued to increase. Plant roots were present only in the middle and bottom layers, but their mycorrhizal colonization did not correlate with litter colonization. The external hyphae length of AMF is abundant (ca. 20 m g(-1) sample) and, in common with sample humidity, remained constant with increasing depth. We conclude that in zones of riparian tropical forest with abundant sufficient litter accumulation and abundant AMF external hyphae, the increase in litter colonization by AMF with depth correlates to the colonization by saprotrophic fungi, but their presence in the deepest layers is independent of both litter colonization by saprotrophic fungi and root colonization by AMF.  相似文献   

20.
自然条件下,兰科植物需要依赖菌根真菌获得营养才能萌发。本研究对白及根和原球茎中分离的4株菌根真菌(WQ17-33、WQ17-43、JST-3和SL15-7)进行分子鉴定,并评价光照和黑暗条件下不同菌株促白及种子萌发和幼苗生根的效果。结果表明,4个菌株分别隶属于鬼伞属Coprinus、胶膜菌属Tulasnella、腊壳菌属SebacinaSerendipita。在种子萌发前期(未形成叶子)进行暗培养较光照对菌株JST-13和SL15-7处理组原球茎阶段萌发具有显著的促进作用。不同菌株共生萌发效果不同,菌株SL15-7较其他处理原球茎和幼苗发育阶段的萌发率高。菌株JST-13和SL15-7处理组形成的幼苗较其他处理组强壮,定殖的菌丝团也较多,其幼苗生根效果也较对照组好。该研究表明白及可与多种不同类群的菌根真菌菌株形成共生关系,这些真菌在促进白及种子萌发和生根能力方面存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号