首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Vectors derived from simian immunodeficiency virus (SIV)   总被引:2,自引:0,他引:2  
Nègre D  Cosset FL 《Biochimie》2002,84(11):1161-1171
In contrast to other retroviruses, lentiviruses have the unique property of infecting non-proliferating cells. Thus vectors derived from lentiviruses are promising tools for in vivo gene delivery applications. Vectors derived from human primate and non-primate lentiviruses have recently been described and, unlike retroviral vectors derived from murine leukemia viruses, lead to stable integration of the transgene into quiescent cells in various organs. Despite all the safety safeguards that have been progressively introduced in lentiviral vectors, the clinical acceptance of vectors derived from pathogenic lentiviruses is subject to debate. It is therefore essential to design vectors derived from a wide range of lentivirus types and to comparatively examine their properties in terms of transduction efficiency and bio-safety. Here, we review the properties of lentiviral vectors derived from simian immunodeficiency virus (SIV).  相似文献   

13.
14.
15.
16.
17.
Insertional mutagenesis resulting in a leukaemia-like lymphoproliferative disease, as observed in the X-SCID (severe combined immunodeficiency) clinical trial using a gamma-retroviral vector that transferred a functional copy of the defective gene into hematopoietic precursor cells of affected children, sparked a debate about a ban on conventional gamma-retroviral vectors. This commentary summarizes the relevant data on this topic and concludes that there is no preclinical or clinical evidence as yet that SIN vectors, which self-inactivate the retroviral long terminal repeats (LTRs), will indeed show an improved safety profile. Conventional murine leukaemia virus (MLV) vectors can thus be used further in clinical gene therapy trials but require a thorough case-by-case risk-benefit analysis.  相似文献   

18.
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic.  相似文献   

19.
20.
Retroviral vectors have become an important tool for gene transfer in vitro and in vivo. Classical Moloney murine leukemia virus (MLV) based retroviral vectors have been used for over 20 years to transfer genes into dividing cells. Cell lines for production of retroviral vectors have become commonly available and modifications in retroviral vector design and use of envelope proteins have made the production of high titer, helper-free, infectious virus stocks relatively easy. More recently, lentiviral vectors, another class of retroviruses, have been modified for in vitro and in vivo gene transfer. The ability of lentiviral vectors to transduce non-dividing cells has made them especially attractive for in vivo gene transfer into differentiated, non-dividing tissues. Several improvements in helper plasmids and vectors have made lentivirus a safe vector system for ex vivo and in vivo gene transfer. This review will briefly summarize the background of these vector systems and provide some common protocols available for the preparation of MLV based retroviral vectors and HIV-1 based lentiviral vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号