首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings.  相似文献   

2.
Resolving the evolutionary history of rapidly diversifying lineages like the Lake Malawi Cichlid Flock demands powerful phylogenetic tools. Although this clade of over 500 species of fish likely diversified in less than two million years, the availability of extensive sequence data sets, such as complete mitochondrial genomes, could help resolve evolutionary patterns in this group. Using a large number of newly developed primers, we generated whole mitochondrial genome sequences for 14 Lake Malawi cichlids. We compared sequence divergence across protein‐coding regions of the mitochondrial genome and also compared divergence in the mitochondrial loci to divergence at two nuclear protein‐coding loci, Mitfb and Dlx2. Despite the widespread sharing of haplotypes of identical sequences at individual loci, the combined use of all protein‐coding mitochondrial loci provided a bifurcating phylogenetic hypothesis for the exemplars of major lineages within the Lake Malawi cichlid radiation. The primers presented here could have substantial utility for evolutionary analyses of mitochondrial evolution and hybridization within this diverse clade.  相似文献   

3.
While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis. In contrast to our hypothesis, chill‐coma recovery tests and population genetic tests of selection both pointed to HGII being involved in cold adaptation. Phylogenetic analyses revealed that HGII is nested within HGI, and has three nonsynonymous changes in ND2, ND5 and CYTB in comparison to HGI. These molecular changes likely increased mtDNA copy number, cold tolerance and fecundity of SBPH, particularly through a function‐altering amino acid change involving M114T in ND2. Nuclear background also influenced fecundity and chill recovery (i.e., mitonuclear epistasis) and protein modelling indicates possible nuclear interactions for the two nonsynonymous changes in ND2 and CYTB. The high occurrence frequency of HGI in the cold climate region of China remains unexplained, but several possible reasons are discussed. Overall, our study points to a link between mtDNA variation and organismal‐level evolution and suggests a possible role of mitonuclear interactions in maintaining mtDNA diversity.  相似文献   

4.
Mitochondria are the site for the citric acid cycle and oxidative phosphorylation (OXPHOS), the final steps of ATP synthesis via cellular respiration. Each mitochondrion contains its own genome; in vertebrates, this is a small, circular DNA molecule that encodes 13 subunits of the multiprotein OXPHOS electron transport complexes. Vertebrate lineages vary dramatically in metabolic rates; thus, functional constraints on mitochondrial‐encoded proteins likely differ, potentially impacting mitochondrial genome evolution. Here, we examine mitochondrial genome evolution in salamanders, which have the lowest metabolic requirements among tetrapods. We show that salamanders experience weaker purifying selection on protein‐coding sequences than do frogs, a comparable amphibian clade with higher metabolic rates. In contrast, we find no evidence for weaker selection against mitochondrial genome expansion in salamanders. Together, these results suggest that different aspects of mitochondrial genome evolution (i.e., nucleotide substitution, accumulation of noncoding sequences) are differently affected by metabolic variation across tetrapod lineages.  相似文献   

5.
Here we describe the complete nucleotide sequence of the mitochondrial genome (16 583/4 bp) of the zebra finch (Taeniopygia guttata). Primers were designed based on highly conserved regions of an alignment of three passerine complete mitochondrial DNA (mtDNA) sequences. A combination of overlapping long polymerase chain reaction (PCR) purification, followed by fully nested PCR and sequencing was used to determine the complete mtDNA genome. Six birds, from distinct maternal lineages of a pedigreed population were sequenced. Five novel haplotypes were identified. These sequences provide the first data for sequence variation across the whole mitochondrial genome of a passerine bird species.  相似文献   

6.

Background  

A full understanding of the patterns and processes of biological diversification requires the dating of evolutionary events, yet the fossil record is inadequate for most lineages under study. Alternatively, a molecular clock approach, in which DNA or amino acid substitution rates are calibrated with fossils or geological/climatic events, can provide indirect estimates of clade ages and diversification rates. The utility of this approach depends on the rate constancy of molecular evolution at a genetic locus across time and across lineages. Although the nuclear ribosomal internal transcribed spacer region (nrITS) is increasingly being used to infer clade ages in plants, little is known about the sources or magnitude of variation in its substitution rate. Here, we systematically review the literature to assess substitution rate variation in nrITS among angiosperms, and we evaluate possible correlates of the variation.  相似文献   

7.
Models of nucleotide substitution were constructed for combined analyses of heterogeneous sequence data (such as those of multiple genes) from the same set of species. The models account for different aspects of the heterogeneity in the evolutionary process of different genes, such as differences in nucleotide frequencies, in substitution rate bias (for example, the transition/transversion rate bias), and in the extent of rate variation across sites. Model parameters were estimated by maximum likelihood and the likelihood ratio test was used to test hypotheses concerning sequence evolution, such as rate constancy among lineages (the assumption of a molecular clock) and proportionality of branch lengths for different genes. The example data from a segment of the mitochondrial genome of six hominoid species (human, common and pygmy chimpanzees, gorilla, orangutan, and siamang) were analyzed. Nucleotides at the three codon positions in the protein-coding regions and from the tRNA-coding regions were considered heterogeneous data sets. Statistical tests showed that the amount of evolution in the sequence data reflected in the estimated branch lengths can be explained by the codon-position effect and lineage effect of substitution rates. The assumption of a molecular clock could not be rejected when the data were analyzed separately or when the rate variation among sites was ignored. However, significant differences in substitution rate among lineages were found when the data sets were combined and when the rate variation among sites was accounted for in the models. Under the assumption that the orangutan and African apes diverged 13 million years ago, the combined analysis of the sequence data estimated the times for the human-chimpanzee separation and for the separation of the gorilla as 4.3 and 6.8 million years ago, respectively.  相似文献   

8.
Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade.  相似文献   

9.
Geography influences the evolutionary trajectory of species by mediating opportunities for hybridization, gene flow, demographic shifts and adaptation. We sought to understand how geography and introgression can generate species‐specific patterns of genetic diversity by examining phylogeographical relationships in the North American skink species Plestiodon multivirgatus and P. tetragrammus (Squamata: Scincidae). Using a multilocus dataset (three mitochondrial genes, four nuclear genes; a total of 3455 bp) we discovered mito‐nuclear discordance, consistent with mtDNA introgression. We further tested for evidence of species‐wide mtDNA introgression by using comparisons of genetic diversity, selection tests and extended Bayesian skyline analyses. Our findings suggest that P. multivirgatus acquired its mitochondrial genome from P. tetragrammus after their initial divergence. This putative species‐wide mitochondrial capture was further evidenced by statistically indistinguishable substitution rates between mtDNA and nDNA in P. multivirgatus. This rate discrepancy was observed in P. multivirgatus but not P. tetragrammus, which has important implications for studies that combine mtDNA and nDNA sequences when inferring time since divergence between taxa. Our findings suggest that by facilitating opportunities for interspecific introgression, geography can alter the course of molecular evolution between recently diverged lineages.  相似文献   

10.
The rapidly evolving mitochondrial control region remains an important source of information on phylogeography and demographic history for cetaceans and other vertebrates, despite great uncertainty in the rate of nucleotide substitution across both nucleotide positions and lineages. Patterns of variation in linked markers with slower rates of evolution can potentially be used to calibrate the rate of nucleotide substitution in the control region and to better understand the interplay of evolutionary and demographic forces across the mitochondrial genome above and below the species level. We have examined patterns of diversity within and between three baleen whale species (gray, humpback, and Antarctic minke whales) in order to determine how patterns of molecular evolution differ between cytochrome b and the control region. Our results show that cytochrome b is less variable than expected given the diversity in the control region for gray and humpback whales, even after functional differences are taken into account, but more variable than expected for minke whales. Differences in the frequency distributions of polymorphic sites and in best-fit models of nucleotide substitution indicate that these patterns may be the result of hypervariability in the control region in gray and humpback whales but, in minke whales, may result from a large, stable or expanding population size coupled with saturation at the control region. Using paired cytochrome b and control region data across individuals, we show that the average rate of nucleotide substitution in the control region may be on average 2.6 times higher than phylogenetically derived estimates in cetaceans. These results highlight the complexity of making inferences from control region data alone and suggest that applying simple rules of DNA sequence analyses across species may be difficult.  相似文献   

11.
The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular‐clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular‐clock model can be a challenging exercise, but a number of model‐selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular‐clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock‐model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.  相似文献   

12.
Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole‐genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.  相似文献   

13.
The mitochondrial genome is one of the most frequently used loci in phylogenetic and phylogeographic analyses, and it is becoming increasingly possible to sequence and analyze this genome in its entirety from diverse taxa. However, sequencing the entire genome is not always desirable or feasible. Which genes should be selected to best infer the evolutionary history of the mitochondria within a group of organisms, and what properties of a gene determine its phylogenetic performance? The current study addresses these questions in a Bayesian phylogenetic framework with reference to a phylogeny of plethodontid and related salamanders derived from 27 complete mitochondrial genomes; this topology is corroborated by nuclear DNA and morphological data. Evolutionary rates for each mitochondrial gene and divergence dates for all nodes in the plethodontid mitochondrial genome phylogeny were estimated in both Bayesian and maximum likelihood frameworks using multiple fossil calibrations, multiple data partitions, and a clock-independent approach. Bayesian analyses of individual genes were performed, and the resulting trees compared against the reference topology. Ordinal logistic regression analysis of molecular evolution rate, gene length, and the G-shape parameter a demonstrated that slower rate of evolution and longer gene length both increased the probability that a gene would perform well phylogenetically. Estimated rates of molecular evolution vary 84-fold among different mitochondrial genes and different salamander lineages, and mean rates among genes vary 15-fold. Despite having conserved amino acid sequences, cox1, cox2, cox3, and cob have the fastest mean rates of nucleotide substitution, and the greatest variation in rates, whereas rrnS and rrnL have the slowest rates. Reasons underlying this rate variation are discussed, as is the extensive rate variation in cox1 in light of its proposed role in DNA barcoding.  相似文献   

14.
Evolutionary timescales can be estimated from genetic data using phylogenetic methods based on the molecular clock. To account for molecular rate variation among lineages, a number of relaxed‐clock models have been developed. Some of these models assume that rates vary among lineages in an autocorrelated manner, so that closely related species share similar rates. In contrast, uncorrelated relaxed clocks allow all of the branch‐specific rates to be drawn from a single distribution, without assuming any correlation between rates along neighbouring branches. There is uncertainty about which of these two classes of relaxed‐clock models are more appropriate for biological data. We present an R package, NELSI, that allows the evolution of DNA sequences to be simulated according to a range of clock models. Using data generated by this package, we assessed the ability of two Bayesian phylogenetic methods to distinguish among different relaxed‐clock models and to quantify rate variation among lineages. The results of our analyses show that rate autocorrelation is typically difficult to detect, even when there is complete taxon sampling. This provides a potential explanation for past failures to detect rate autocorrelation in a range of data sets.  相似文献   

15.
Accurate estimates of mitochondrial substitution rates are central to molecular studies of human evolution, but meaningful comparisons of published studies are problematic because of the wide range of methodologies and data sets employed. These differences are nowhere more pronounced than among rates estimated from phylogenies, genealogies, and pedigrees. By using a data set comprising mitochondrial genomes from 177 humans, we estimate substitution rates for various data partitions by using Bayesian phylogenetic analysis with a relaxed molecular clock. We compare the effect of multiple internal calibrations with the customary human-chimpanzee split. The analyses reveal wide variation among estimated substitution rates and divergence times made with different partitions and calibrations, with evidence of substitutional saturation, natural selection, and significant rate heterogeneity among lineages and among sites. Collectively, the results support dates for migration out of Africa and the common mitochondrial ancestor of humans that are considerably more recent than most previous estimates. Our results also demonstrate that human mitochondrial genomes exhibit a number of molecular evolutionary complexities that necessitate the use of sophisticated analytical models for genetic analyses.  相似文献   

16.
Iphisa elegans Gray, 1851 is a ground‐dwelling lizard widespread over Amazonia that displays a broadly conserved external morphology over its range. This wide geographical distribution and conservation of body form contrasts with the expected poor dispersal ability of the species, the tumultuous past of Amazonia, and the previously documented prevalence of cryptic species in widespread terrestrial organisms in this region. Here we investigate this homogeneity by examining hemipenial morphology and conducting phylogenetic analyses of mitochondrial (CYTB) and nuclear (C‐MOS) DNA sequence data from 49 individuals sampled across Amazonia. We detected remarkable variation in hemipenial morphology within this species, with multiple cases of sympatric occurrence of distinct hemipenial morphotypes. Phylogenetic analyses revealed highly divergent lineages corroborating the patterns suggested by the hemipenial morphotypes, including co‐occurrence of different lineages. The degrees of genetic and morphological distinctness, as well as instances of sympatry among mtDNA lineages/morphotypes without nuDNA allele sharing, suggest that I. elegans is a complex of cryptic species. An extensive and integrative taxonomic revision of the I. elegans complex throughout its wide geographical range is needed. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 361–376.  相似文献   

17.
Estimating the age of species or their component lineages based on sequence data is crucial for many studies in avian evolutionary biology. Although calibrations of the molecular clock in birds have been performed almost exclusively using cytochrome b (cyt b), they are commonly extrapolated to other mitochondrial genes. The existence of a large, standardized cytochrome c oxidase subunit I (COI) library generated as a result of the DNA barcoding initiative provides the opportunity to obtain a calibration for this mitochondrial gene in birds. In this study we compare the evolutionary rate of COI relative to cyt b across ten different avian orders. We obtained divergence estimates for both genes from nearly 300 phylogenetically independent pairs of species through the analysis of almost 5000 public sequences. For each pair of species we calculated the difference in divergence between COI and cyt b. Our results indicate that COI evolves on average 14% slower than cyt b, but also reveal considerable variation both among and within avian orders, precluding the use of this value as a standard adjustment for the COI molecular clock for birds. Our findings suggest that this variation is partially explained by a clear negative relationship between the difference in divergence in these genes and the age of species. Distances for cyt b are higher than those for COI for closely related species, but the values become similar as the divergence between the species increases. This appears to be the result of a stronger pattern of negative time‐dependency in the rate of cyt b than in that of COI, a difference that could be related to lower functional constraints on a small number of sites in cyt b that allow it to initially accumulate mutations more rapidly than COI.  相似文献   

18.
The sedentary, predatory characin Hoplias malabaricus has one of the widest distributions of freshwater fishes in South America and is characterized by seven karyomorphs (A–G) that occur in sympatric and allopatric populations. Karyotypical patterns of variation in wild populations have been interpreted as evidence of multiple lineages within this nominal species, a possibility that may limit the validity of experimental data for particular karyomorphs. This study used the phylogeographic and genealogical concordance between cytogenetic (N = 49) and molecular (mitochondrial DNA) (N = 73) data on 17 samples, collected in 12 basins from south‐eastern and north‐eastern Brazil, to assess the systematic value of cytogenetic data. Cytogenetic patterns show a sex chromosome system in the 2n = 40F karyomorph. Molecular and cytogenetic data indicate a long, independent evolutionary history of karyomorphs and a coastal origin of continental populations in south‐eastern Brazil. The lack of fit with molecular clock expectations of divergence between groups is likely to be due to strong demographic fluctuations during the evolution of this species complex. The results indicate that karyotypical identification provides a reliable baseline for placing experimental studies on Hoplias spp. in a phylogenetic context.  相似文献   

19.
Iva s.str. (comprising ten species) was examined by cpDNA restriction site variation to determine phyletic relationships within the group. The results were compared with relationships proposed from other data. A total of 86 restriction site mutations was detected, 47 of which proved phylogenetically informative. A single most parsimonious tree was obtained using both Wagner and Dollo parsimony. The tree revealed three main lineages that are congruent with the three chromosome lineages (base numbers of x = 16, 17, 18). The monophyly of the x = 16 and 18 groups was supported strongly by molecular data, while the monophyly of x = 17 lineage was only supported moderately. Relationships among the three lineages indicate that the sect.Iva is paraphyletic because sect.Linearbractea is nested within it. Both morphological data and the secondary chemical data are in agreement with the proposed cpDNA phylogeny. Because of this agreement, sect.Iva is revised such that,I. axillaris was excluded and positioned within the newly proposed sect.Rhizoma. Patterns and rates of cpDNA evolution were also examined. The results indicated an uneven evolution in the chloroplast genome with different rates of cpDNA evolution in at least a few species ofIva. However, the evolutionary clock hypothesis can not be rejected within most of the lineages inIva.  相似文献   

20.
Aim To test the congruence of phylogeographic patterns and processes between a woodland agamid lizard (Diporiphora australis) and well‐studied Australian wet tropics fauna. Specifically, to determine whether the biogeographic history of D. australis is more consistent with a history of vicariance, which is common in wet tropics fauna, or with a history of dispersal with expansion, which would be expected for species occupying woodland habitats that expanded with the increasingly drier conditions in eastern Australia during the Miocene–Pleistocene. Location North‐eastern Australia. Methods Field‐collected and museum tissue samples from across the entire distribution of D. australis were used to compile a comprehensive phylo‐geographic dataset based on c. 1400 bp of mitochondrial DNA (mtDNA), incorporating the ND2 protein‐coding gene. We used phylogenetic methods to assess biogeographic patterns within D. australis and relaxed molecular clock analyses were conducted to estimate divergence times. Hierarchical Shimodaira–Hasegawa tests were used to test alternative topologies representing vicariant, dispersal and mixed dispersal/vicariant biogeographic hypotheses. Phylogenetic analyses were combined with phylogeographic analyses to gain an insight into the evolutionary processes operating within D. australis. Results Phylogenetic analyses identified six major mtDNA clades within D. australis, with phylogeographic patterns closely matching those seen in many wet tropics taxa. Congruent phylogeographic breaks were observed across the Black Mountain Corridor, Burdekin and St Lawrence Gaps. Divergence amongst clades was found to decrease in a north–south direction, with a trend of increasing population expansion in the south. Main conclusions While phylogeographic patterns in D australis reflect those seen in many rain forest fauna of the wet tropics, the evolutionary processes underlying these patterns appear to be very different. Our results support a history of sequential colonization of D. australis from north to south across major biogeographic barriers from the late Miocene–Pleistocene. These patterns are most likely in response to expanding woodland habitats. Our results strengthen the data available for this iconic region in Australia by exploring the understudied woodland habitats. In addition, our study shows the importance of thorough investigations of not only the biogeographic patterns displayed by species but also the evolutionary processes underlying such patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号