首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mouse brain mitochondria have a nitric oxide synthase (mtNOS) of 147 kDa that reacts with anti-nNOS antibodies and that shows an enzymatic activity of 0.31-0.48 nmol NO/min mg protein. Addition of chlorpromazine to brain submitochondrial membranes inhibited mtNOS activity (IC50 = 2.0 +/- 0.1 microM). Brain mitochondria isolated from chlorpromazine-treated mice (10 mg/kg, i.p.) show a marked (48%) inhibition of mtNOS activity and a markedly increased state 3 respiration (40 and 29% with malate-glutamate and succinate as substrates, respectively). Respiration of mitochondria isolated from control mice was 16% decreased by arginine and 56% increased by NNA (Nomega-nitro-L-arginine) indicating a regulatory activity of mtNOS and NO on mitochondrial respiration. Similarly, mitochondrial H2O2 production was 55% decreased by NNA. The effect of NNA on mitochondrial respiration and H2O2 production was significantly lower in chlorpromazine-added mitochondria and absent in mitochondria isolated from chlorpromazine-treated mice. Results indicate that chlorpromazine inhibits brain mtNOS activity in vitro and can exert the same action in vivo.  相似文献   

2.
To test whether endothelium-derived nitric oxide (NO) regulates mitochondrial respiration, NO was pharmacologically modulated in isolated mouse hearts, which were perfused at constant flow to sensitively detect small changes in myocardial O2 consumption (MVO2). Stimulation of NO formation by 10 microM bradykinin (BK) increased coronary venous nitrite release fivefold to 58 +/- 33 nM (n = 17). Vasodilatation by BK, adenosine (1 microM), or papaverine (10 microM) decreased perfusion pressure, left ventricular developed pressure (LVDP), and MVO2. In the presence of adenosine-induced vasodilatation, stimulation of endothelial NO synthesis by BK had no effect on LVDP and MVO2. Also, inhibition of NO formation by NG-monomethyl-l-arginine (l-NMMA, 100 microM) did not significantly alter LVDP and MVO2. Similarly, intracoronary infusion of authentic NO 2 microM were contractile dysfunction and MVO2 reduction observed. Because BK-induced stimulation of endothelial NO formation and basal NO are not sufficient to impair MVO2 in the saline-perfused mouse heart, a tonic control of the respiratory chain by endothelial NO is difficult to conceive.  相似文献   

3.
Nitric oxide (NO) and prostaglandins (PG) together play a role in regulating blood flow during exercise. NO also regulates mitochondrial oxygen consumption through competitive binding to cytochrome-c oxidase. Indomethacin uncouples and inhibits the electron transport chain in a concentration-dependent manner, and thus, inhibition of NO and PG synthesis may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG synthesis blockade (L-NMMA and indomethacin, respectively) on mitochondrial respiration in human muscle following knee extension exercise (KEE). Specifically, this study examined the physiological effect of NO, and the pharmacological effect of indomethacin, on muscle mitochondrial function. Consistent with their mechanism of action, we hypothesized that inhibition of nitric oxide synthase (NOS) and PG synthesis would have opposite effects on muscle mitochondrial respiration. Mitochondrial respiration was measured ex vivo by high-resolution respirometry in saponin-permeabilized fibers following 6 min KEE in control (CON; n = 8), arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA; n = 4) and Indo (n = 4) followed by combined inhibition of NOS and PG synthesis (L-NMMA + Indo, n = 8). ADP-stimulated state 3 respiration (OXPHOS) with substrates for complex I (glutamate, malate) was reduced 50% by Indo. State 3 O(2) flux with complex I and II substrates was reduced less with both Indo (20%) and L-NMMA + Indo (15%) compared with CON. The results indicate that indomethacin reduces state 3 mitochondrial respiration primarily at complex I of the respiratory chain, while blockade of NOS by L-NMMA counteracts the inhibition by Indo. This effect on muscle mitochondria, in concert with a reduction of blood flow accounts for in vivo changes in muscle O(2) consumption during combined blockade of NOS and PG synthesis.  相似文献   

4.
Nitric oxide (NO) signal transduction may involve at least two targets: the guanylyl cyclase-coupled NO receptor (NO(GC)R), which catalyzes cGMP formation, and cytochrome c oxidase, which is responsible for mitochondrial O(2) consumption and which is inhibited by NO in competition with O(2). Current evidence indicates that the two targets may be similarly sensitive to NO, but quantitative comparison has been difficult because of an inability to administer NO in known, constant concentrations. We addressed this deficiency and found that purified NO(GC)R was about 100-fold more sensitive to NO than reported previously, 50% of maximal activity requiring only 4 nm NO. Conversely, at physiological O(2) concentrations (20-30 microM), mitochondrial respiration was 2-10-fold less sensitive to NO than estimated beforehand. The two concentration-response curves showed minimal overlap. Accordingly, an NO concentration maximally active on the NO(GC)R (20 nm) inhibited respiration only when the O(2) concentration was pathologically low (50% inhibition at 5 microM O(2)). Studies on brain slices under conditions of maximal stimulation of endogenous NO synthesis suggested that the local NO concentration did not rise above 4 nm. It is concluded that under physiological conditions, at least in brain, NO is constrained to target the NO(GC)R without inhibiting mitochondrial respiration.  相似文献   

5.
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.  相似文献   

6.
Production of nitric oxide (NO) by mitochondrial membranes as methemoglobin formation sensitive to N(G)-methyl-l-arginine inhibition and mitochondrial O(2) consumption in metabolic states 3 and 4 and the respiratory control (state 3/state 4) were measured at early stages of rat thymocyte apoptosis. Programmed cell death was induced by addition of methylprednisolone and etoposide to thymocyte suspensions. Increased NO production by mitochondrial membranes was observed after 30 min of methylprednisolone and etoposide addition and was accompanied by mitochondrial respiratory impairment as an early phenomenon in apoptotic thymocytes. The respiratory control in isolated mitochondria from untreated thymocytes was 4.2 +/- 0.2 and decreased to 3.1 +/- 0.2 and 1.9 +/- 0.3 after 1 h of methylprednisolone and etoposide treatment, respectively. The low mitochondrial respiratory control was accompanied by a marked decrease in GSH and cytochrome c content. Moreover, an inhibitory effect in the amount of apoptosis due to thymocyte pretreatment with N(G)-methyl-l-arginine and N(omega)-nitro-(l)-arginine (l-NNA), indicate that nitric oxide production is closely involved in the signaling of rat thymocyte apoptosis.  相似文献   

7.
The oxygen dependence of mitochondrial respiration was investigated using suspensions of mitochondria and quiescent ventricular myocytes isolated from adult rat hearts. A new optical method was used to determine oxygen concentration in the suspending media. The P50 for respiration for coupled mitochondria at a high [ATP]/[ADP].[Pi] ratio and oxidizing glutamate/malate was 0.45 +/- 0.03 microM but was increased to 0.57 +/- 0.02 microM by the addition of succinate to the substrate mixture. This value was decreased to less than 0.06 +/- 0.01 microM when the ATP/ADP.Pi ratio was decreased with the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The P50 value in resting myocytes was 2.23 +/- 0.13 microM at a Vmax of 13.22 +/- 1.38 nmol of O2/g, dry weight/min. During resting conditions, the creatine phosphate/creatine and ATPfree/ADPfree ratios were high in these cells, 6.81 +/- 1.11 and 1131 +/- 185, respectively. Addition of 1 mM Ca2+ to the suspending media increased the P50 by 50% whereas respiration rose by only 10%. Respiratory rate was increased up to about 10-fold by uncoupling the cells, but the P50 increased by less than 3-fold. When these uncoupled cells were inhibited with Amytal to lower the rate of oxygen consumption to that of resting cells, the P50 fell to 1.25 +/- 0.14 microM. Diffusion models indicate that in resting myocytes, the oxygen concentration difference from sarcolemma to cell core was approximately 1.84 microM with an additional difference of about 0.27 microM attributed to the unstirred layer of media surrounding each cell. The intracellular oxygen diffusivity coefficient in myocytes was calculated to be 0.30 x 10(-5) cm2/s. The results show that the oxygen dependence of respiration is modulated by the cellular metabolic state. At near maximal levels of respiration or on recovery from hypoxic episodes, oxygen diffusion may become an important determinant of the oxygen dependence of myocardial respiration.  相似文献   

8.
Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain and that this process generates superoxide (O(2)(*-)); these effects are blocked by the complex I blocker rotenone. We demonstrated recently that succinate + rotenone-dependent H(2)O(2) production in isolated mitochondria increased mildly on activation of the putative big mitochondrial Ca(2+)-sensitive K(+) channel (mtBK(Ca)) by low concentrations of 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). In the present study we examined effects of NS-1619 on mitochondrial O(2) consumption, membrane potential (DeltaPsi(m)), H(2)O(2) release rates, and redox state in isolated guinea pig heart mitochondria respiring on succinate but without rotenone. NS-1619 (30 microM) increased state 2 and state 4 respiration by 26 +/- 4% and 14 +/- 4%, respectively; this increase was abolished by the BK(Ca) channel blocker paxilline (5 microM). Paxilline alone had no effect on respiration. NS-1619 did not alter DeltaPsi(m) or redox state but decreased H(2)O(2) production by 73% vs. control; this effect was incompletely inhibited by paxilline. We conclude that under substrate conditions that allow reverse electron flow, matrix K(+) influx through mtBK(Ca) channels reduces mitochondrial H(2)O(2) production by accelerating forward electron flow. Our prior study showed that NS-1619 induced an increase in H(2)O(2) production with blocked reverse electron flow. The present results suggest that NS-1619-induced matrix K(+) influx increases forward electron flow despite the high reverse electron flow, and emphasize the importance of substrate conditions on interpretation of effects on mitochondrial bioenergetics.  相似文献   

9.
Schild L  Plumeyer F  Reiser G 《The FEBS journal》2005,272(22):5844-5852
Injury of liver by ischaemia crucially involves mitochondrial damage. The role of Ca(2+) in mitochondrial damage is still unclear. We investigated the effect of low micromolar Ca(2+) concentrations on respiration, membrane permeability, and antioxidative defence in liver mitochondria exposed to hypoxia/reoxygenation. Hypoxia/reoxygenation caused decrease in state 3 respiration and in the respiratory control ratio. Liver mitochondria were almost completely protected at about 2 microM Ca(2+). Below and above 2 microM Ca(2+), mitochondrial function was deteriorated, as indicated by the decrease in respiratory control ratio. Above 2 microM Ca(2+), the mitochondrial membrane was permeabilized, as demonstrated by the sensitivity of state 3 respiration to NADH. Below 2 microM Ca(2+), the nitric oxide synthase inhibitor nitro-l-arginine methylester had a protective effect. The activities of the manganese superoxide dismutase and glutathione peroxidase after hypoxia showed maximal values at about 2 microM Ca(2+). We conclude that Ca(2+) exerts a protective effect on mitochondria within a narrow concentration window, by increasing the antioxidative defence.  相似文献   

10.
The stimulation of 2-oxoglutarate and NAD(+)-isocitrate dehydrogenase by Ca2+ in mitochondria from normal tissues has been proposed to mediate partially the activation of oxidative energy metabolism elicited by physiological elevations in cytosolic Ca2+. This mode of regulation may also occur in tumor cells in which several aspects of mitochondrial metabolism are known to be altered. This study provides a comparison of the stimulation by submicromolar concentrations of Ca2+ on the rates of ATP-generating (state 3) respiration under physiologically realistic conditions by mitochondria isolated from normal rat liver and from highly malignant rat AS-30D ascites hepatoma cells. The K0.5 for activation of glutamate-dependent state 3 respiration by Ca2+ in the presence of ATP at 37 degrees C was determined to be 0.70 +/- 0.05 (S.E.) microM for hepatoma mitochondria and 0.90 +/- 0.03 microM for rat liver mitochondria. This activation was also reflected by a Ca2(+)-induced shift in the oxidation-reduction state of hepatoma mitochondrial pyridine nucleotides to a more reduced level and Ca2+ stimulation of 14CO2 production from [1-14C]glutamate. Whereas the Ca2+ sensitivity of state 3 respiration by hepatoma mitochondria can be explained by the activation of 2-oxoglutarate and possibly NAD(+)-isocitrate dehydrogenases, the Ca2+ sensitivity of liver mitochondrial respiration appears to be predominantly mediated by activation of electron flow through ubiquinone and Complex III of the electron transport chain, as indicated by the specificity of the effects of Ca2+ on respiration with different oxidizable substrates. Although rat liver and hepatoma mitochondria employ different modes of Ca2(+)-activated ATP generation, these results support the hypothesis that changes in cytosolic Ca2+ play a significant role in the potentiation of energy production in tumor, as well as normal tissue.  相似文献   

11.
Mitochondria isolated from rat heart, liver, kidney and brain (respiratory control 4.0-6.5) release NO and H2O2 at rates that depend on the mitochondrial metabolic state: releases are higher in state 4, about 1.7-2.0 times for NO and 4-16 times for H2O2, than in state 3. NO release in rat liver mitochondria showed an exponential dependence on membrane potential in the range 55 to 180 mV, as determined by Rh-123 fluorescence. A similar behavior was reported for mitochondrial H2O2 production by [S.S. Korshunov, V.P. Skulachev, A.A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15_18.]. Transition from state 4 to state 3 of brain cortex mitochondria was associated to a decrease in NO release (50%) and in membrane potential (24-53%), this latter determined by flow cytometry and DiOC6 and JC-1 fluorescence. The fraction of cytosolic NO provided by diffusion from mitochondria was 61% in heart, 47% in liver, 30% in kidney, and 18% in brain. The data supports the speculation that NO and H2O2 report a high mitochondrial energy charge to the cytosol. Regulation of mtNOS activity by membrane potential makes mtNOS a regulable enzyme that in turn regulates mitochondrial O2 uptake and H2O2 production.  相似文献   

12.
This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.  相似文献   

13.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

14.
Cold acclimation of Wistar rats for 2-4 weeks at about 3 degrees C resulted in an increased respiration rate and a reduced ADP/O ratio in liver mitochondria. With increasing duration of acclimation up to 10-12 weeks, these parameters returned to a normal level. The increase in the respiration rate and the decline of the mitochondrial ADP/O ratio were associated with a significant activation of the electroneutral release of Ca2+. When the animals were acclimated for 10-12 weeks the rate of Ca2+ release reduced to control values. The addition of 1 microM ruthenium red resulted in a decrease in the rates of mitochondrial respiration in control and cold-acclimated rats to approximately equal values and in a partial restoration of the ADP/O ratio in liver mitochondria of rats kept in the cold for 2-4 weeks. The respiratory activity of mitochondria isolated in the presence of 1 mM EGTA unaffected by ruthenium red.  相似文献   

15.
Micromolar nitric oxide (NO) rapidly (ms) inhibits cytochrome c oxidase in turnover with physiological substrates. Two reaction mechanisms have been identified leading, respectively, to formation of a nitrosyl- [a3(2+) -NO] or a nitrite- [a3(3+) -NO2-] derivative of the enzyme. In the presence of O2, the nitrosyl adduct recovers activity slowly, following NO displacement at k' approximately equal to 0.01 s(-1) (37 degrees C); the recovery of the nitrite adduct is much faster. Relevant to pathophysiology, the enzyme does not degrade NO by following the first mechanism, whereas by following the second one it promotes NO oxidation and disposal as nitrite/nitrate. The reaction between NO and cytochrome c oxidase has been investigated at different integration levels of the enzyme, including the in situ state, such as in mouse liver mitochondria or cultured human SY5Y neuroblastoma cells. The respiratory chain is inhibited by NO, either supplied exogenously or produced endogenously via the NO synthase activation. Inhibition of respiration is reversible, although it remains to be clarified whether reversibility is always full and how it depends on concentration of and time of exposure to NO. Oxygraphic measurements show that cultured cells or isolated state 4 mitochondria exposed to micromolar (or less) NO recover from NO inhibition rapidly, as if the nitrite reaction was predominant. Mitochondria in state 3 display a slightly more persistent inhibition than in state 4, possibly due to a higher accumulation of the nitrosyl adduct. Among a number of parameters that appear to control the switch over between the two mechanisms, the concentration of reductants (reduced cytochrome c) at the cytochrome c oxidase site has been proved to be the most relevant one.  相似文献   

16.
Skeletal muscle exhibits considerable variation in mitochondrial content among fiber types, but it is less clear whether mitochondria from different fiber types also present specific functional and regulatory properties. The present experiment was undertaken on ten 170-day-old pigs to compare functional properties and control of respiration by adenine nucleotides in mitochondria isolated from predominantly slow-twitch (Rhomboideus (RM)) and fast-twitch (Longissimus (LM)) muscles. Mitochondrial ATP synthesis, respiratory control ratio (RCR) and ADP-stimulated respiration with either complex I or II substrates were significantly higher (25-30%, P<0.05) in RM than in LM mitochondria, whereas no difference was observed for basal respiration. Based on mitochondrial enzyme activities (cytochrome c oxidase [COX], F0F1-ATPase, mitochondrial creatine kinase [mi-CK]), the higher ADP-stimulated respiration rate of RM mitochondria appeared mainly related to a higher maximal oxidative capacity, without any difference in the maximal phosphorylation potential. Mitochondrial K(m) for ADP was similar in RM (4.4+/-0.9 microM) and LM (5.9+/-1.2 microM) muscles (P>0.05) but the inhibitory effect of ATP was more marked in LM (P<0.01). These findings demonstrate that the regulation of mitochondrial respiration by ATP differs according to muscle contractile type and that absolute muscle oxidative capacity not only relies on mitochondrial density but also on mitochondrial functioning per se.  相似文献   

17.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

18.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

19.
Defining how extramitochondrial high-energy phosphate acceptors influence the rates of heart oxidative phosphorylation is essential for understanding the control of myocardial respiration. When the production of phosphocreatine is coupled to electron transport via mitochondrial creatine kinase, the net reaction can be expressed by the balanced equation: creatine + Pi----phosphocreatine + H2O. This suggests that rates of oxygen consumption could be regulated by changes in [creatine], [Pi], or [phosphocreatine], alone or in combination. The effects of altering these metabolites upon mitochondrial rates of respiration were examined in vitro. Rat heart mitochondria were incubated in succinate-containing oxygraph medium (pH 7.2, 37 degrees C) supplemented with five combinations of creatine (1.0-20 mM), phosphocreatine (0-25 mM), and Pi (0.25-5.0 mM). In all cases, the mitochondrial creatine kinase reaction was initiated by additions of 0.5 mM ATP. To emphasize the duality of control, the results are presented as three-dimensional stereoscopic projections. Under physiological conditions, with 5.0 mM creatine, increases in Pi or decreases in phosphocreatine had little influence upon mitochondrial respiration. When phosphocreatine was held constant (15 mM), changes in [creatine] modestly stimulated respiratory rates, whereas Pi again showed little effect. With 1.0 mM Pi, respiration clearly became dependent upon changes in [creatine] and [phosphocreatine]. Initially, respiratory rates increased as a function of [creatine]. However, at [phosphocreatine] values below 10 mM, product "deinhibition" was observed, and respiratory rates rapidly increased to 80% State 3. With 2.0 mM Pi or higher, respiration could be regulated from State 4 to 100% State 3. Overall, the data show how increasing [creatine] and decreasing [phosphocreatine] influence the rates of oxidative phosphorylation when mediated by mitochondrial creatine kinase. Thus, these changes may become secondary cytoplasmic signals regulating heart oxygen consumption.  相似文献   

20.
We investigated the effect of estrogens on heart mitochondrial functions and whether estrogens can prevent calcium-induced release of cytochrome c from mitochondria. 10 nM-10 microM 17beta-estradiol or 4-hydroxytamoxifen did not affect mitochondrial respiration rate and membrane potential in state 3 and state 4. Higher concentrations of both agents decreased state 3 respiration rate and membrane potential. 100 nM 17beta-estradiol and 4-hydroxytamoxifen blocked high calcium-induced cytochrome c release from mitochondria but not mitochondrial swelling. Thus, at physiological concentrations estrogens do not affect mitochondrial respiratory functions but protect heart mitochondria from high calcium-induced release of cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号