首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基因型与环境的互作(G×E)对数量性状的影响常常掩盖了遗传因子引起的性状变化. 在盐胁迫环境与非胁迫环境下分别调查了水稻(Oriza sativa L.) 5个重要的农艺性状, 总共检测到24个QTL, 分布在除第9, 11号染色体外的各染色体上. 盐胁迫环境中检出了9个QTL: 千粒重1个; 抽穗期2个; 株高1个; 每穗粒数2个; 有效分蘖3个, 占总数的37.5%; 非胁迫环境中则检出了17个QTL: 千粒重5个; 抽穗期6个; 株高3个; 每穗粒数2个; 有效分蘖1个, 占总数的70.8%; 有两个QTL在两种环境中都检测到, 占总数的8.3%, 它们分别是位于第4染色体上控制抽穗期的QTL和位于第6染色体上控制每穗粒数的QTL. 此外, 还检测出3个包含多个QTL的区间, 它们分别位于第1, 4和8染色体上, 其中第1染色体上RG612分子标记附近检出两个QTL, 在盐胁迫环境与非胁迫环境中分别控制有效分蘖和抽穗期这两个重要的农艺性状, 其加性效应均由来源于JX17的等位基因提供; 第4染色体上的C975-RG449区间检测到2个QTL, qrHD-4c在非协迫环境中控制抽穗期, qrGPP-4s则在胁迫环境中控制每穗粒数; 第8染色体上的RG885-GA408区间检测到3个QTL, 在非胁迫环境下分别控制抽穗期、千粒重、株高3个性状, 在胁迫环境下则未能检测到. 通过对水稻在盐胁迫环境与非胁迫环境下的QTL对比研究, 发现水稻第8染色体上几个控制水稻重要农艺性状的QTL明显受盐胁迫的影响.  相似文献   

2.
玉米雄穗分枝数与主轴长的QTL鉴定   总被引:8,自引:0,他引:8  
高世斌  赵茂俊  兰海  张志明 《遗传》2007,29(8):1013-1013―1017
在包含103个SSR标记的连锁图谱基础上, 运用复合区间作图法检测玉米组合(N87-1×9526 )F3家系在正常与干旱胁迫环境下的雄穗分枝数与主轴长性状QTL。雄穗分枝数在正常环境下被检测到2个QTL座位, 分别位于第5和7连锁群上; 在胁迫环境下被检测到4个QTL座位分别位于 2、5、7和10连锁群上, 其中位于第5和7连锁群上的QTL不仅具有一致性而且与本作图群体中曾检测到的耐旱相关性状QTL存在连锁。雄穗主轴长在正常环境下被检测到2个QTL位于第2和第6连锁群上, 在干旱胁迫环境下被检测到了3个QTL分别于第2、4和10连锁群上, 其中位于第2染色体上的QTL是两种环境下所共同检测到的QTL。分析QTL的遗传作用方式表明, 雄穗分枝数以部分加性效应为主, 而雄主轴长全部表现为显性和超显性。  相似文献   

3.
不同水分条件下玉米株高和穗位高的QTL分析   总被引:10,自引:0,他引:10  
干旱是影响玉米产量的重要因素.在干旱条件下,玉米株高和穗位高往往受到影响,因此是研究耐旱性的重要指标.本研究利用A188×91黄15的F2∶3家系,进行株高和穗位高的数量性状位点(QTL)分析.结果表明,在水分胁迫条件下,分别各有10个QTL与株高和穗位高有关;在水分充足条件下,则检测到各有6个QTL与株高和穗位高有关.各QTL解释的表型变异在7.3%~53.9%之间.位于第8染色体上的QTL个数占总QTL近50%,LOD值均大于4.6,推测该染色体存在控制玉米株高和穗位高QTL的重要区域.本研究在bnlg1812标记附近检测到在水分胁迫下同时控制株高和穗位高的QTL,解释的表型变异在20%以上,该QTL是值得进一步研究和利用的位点.  相似文献   

4.
干旱胁迫下水稻柱头外露率加性、上位性效应和Q×E互作   总被引:1,自引:0,他引:1  
在耐旱性筛选设施内对一套水稻重组自交系群体(共185个株系)进行两年的水分胁迫和非胁迫处理,调查每穗颖花数(sNP)、单边柱头外露率(PSES)、双边柱头外露率(PDES)和柱头总外露率(PES)等4个开花相关性状.方差分析结果显示年份、株系和水分处理,以及相互间互作的效应均达显著水平.表型相关以PSES和PES间最高(r=0.9752***),其次为PDES和PES (r=0.7150***),最次为PSES和PDES间(r=0.5424***).利用203个SSR标记建立的连锁图,胁迫和非胁迫条件下各检测到6个SNP的主效QTL,3~4个PSES、PDES和PES的主效QTL;检测到1~9对上位性QTL影响颖花数和柱头外露率.大部分加性和上位性效应的贡献率较低(0.76%~9.92%),仅有少数QTL或上位性QTL解释总方差的10%以上.一些主效和上位性QTL在PSES、PDES和PES间被共同检测到,解释了不同柱头外露率指标间高度正相关关系.几乎没有在水分胁迫和非胁迫两种条件下都检测到的QTL,暗示着干旱对颖花数和柱头外露率有严重的影响.  相似文献   

5.
小麦苗期水分利用效率及其相关性状的QTL分析   总被引:13,自引:0,他引:13  
以小麦DH群体(旱选10号×鲁麦14)为研究材料,采用复合区间作图法,对小麦幼苗在水分胁迫及非胁迫条件下的水分利用效率(WUE)及其相关性状的QTL进行定位,并对比分析QTL的加性效应.两种水分条件下共检测到14个具显著加性效应的QTL,分布在2A、3A、4A、5A、6A、7A、1B、3B、3D染色体上,可解释表型变异的范围在6.36%~19.73%.其中,非胁迫(对照)条件下检测到10个QTL,包括2个单株WUE的QTL,5个地上部WUE的QTL,1个根系WUE的QTL及2个总耗水量的QTL;水分胁迫条件下上述性状各检测到1个QTL.对于同一性状没有检测到在两种水分条件下均位于同一标记区间的QTL,表明不同水分环境条件下同一性状的QTL表达模式是不同的.论文也讨论了可能用于标记辅助选择的QTL及其分子标记.  相似文献   

6.
穗颈维管性状是实现"源"合成的同化物输送至籽粒中的唯一通道。本研究利用来源于籼稻93-11(受体)和粳稻日本晴(供体)构建的染色体片段代换系群体,调查穗颈维管性状与穗部产量性状。结果表明,大部分穗颈维管性状与穗部产量性状呈显著相关;7个穗颈维管性状共检测到42个QTL,其中16个位点日本晴等位基因起增效作用;6个穗部产量性状共检测到45个QTL,其中14个位点日本晴等位基因起增效作用。综合分析穗颈维管性状与产量性状的QTL定位区间,发现有6个同时调控穗颈维管性状和穗部产量性状的QTL簇,结合已有报道与候选基因序列分析,推测一因多效基因Ghd7和IPA1可能分别调控第7染色体9 Mb和第8染色体25 Mb的QTL簇。这些结果表明了水稻穗颈维管性状和产量性状既存在不同的遗传基础,也存在共同的遗传机制。挖掘更多控制"流"的QTL与同时调控"流"和"库"的一因多效基因可为水稻聚合育种、品种改良提供十分重要的理论与实践意义。  相似文献   

7.
人工合成小麦Am3大穗多粒QTL的发掘与利用   总被引:4,自引:1,他引:3  
穗粒数是小麦的重要产量性状之一,本研究以人工合成双二倍体小麦Am3为供体,普通小麦品种莱州953为受体,培育出了高穗粒数BC5F1导入系,以导入系后代75个BC5F1为材料,利用复合区间作图法对其进行穗部性状的QTL定位。共检测到2个控制穗长、4个控制小穗数、2个控制穗粒数的QTL位点,贡献率分别为1%~22%、1%~9%和1%~15%。其中穗长和穗粒数分别有1个QTL能在两年重复检测到。并且在1A染色体上检测到同时控制小穗数和穗粒数的QTL,穗长和小穗数的QTL被定位在4A染色体上同一个区域,表明这2个位点是与穗部性状有关的热点区域。本研究发现的QTL多为来自Am3的新位点,对于小麦改良将具有重要价值。  相似文献   

8.
利用绿豆(Vigna radiata)品种苏绿16-10和潍绿11杂交构建的F2和F3群体发掘调控绿豆产量相关性状的遗传位点。同时对绿豆产量相关性状进行表型鉴定和相关性分析, 并利用构建的遗传连锁图谱进行QTL定位。结果表明, 单株产量与单株荚数、单荚粒数、百粒重和分枝数均呈正相关。单株产量与单株荚数的相关性最高, 这2个性状在F2和F3群体中的相关系数分别为0.950和0.914。在F2群体中, 共检测到8个与产量性状相关的QTL位点, 其中与单株荚数、单荚粒数和单株产量相关的QTL位点各1个, 分别解释11.09% (qNPP3)、17.93% (qNSP3)和14.18% (qYP3)的表型变异; 2个与分枝数相关的QTL位点qBMS3qBMS11, 分别解释18.51%和7.06%的表型变异; 3个与百粒重相关的QTL位点qHSW3qHSW7qHSW10, 分别解释5.33%、46.07%和4.24%的表型变异。在F3群体中, qNSP3qHSW7再次被检测到, 表明这2个QTLs有较好的遗传稳定性。同时, 开发了1个与百粒重主效QTL qHSW7紧密连锁的InDel标记R7-13.4, 并利用自然群体对该分子标记辅助筛选的有效性进行了验证。研究结果可为绿豆产量相关性状基因的定位、克隆及分子标记辅助育种提供参考。  相似文献   

9.
直播条件下水稻6个穗部性状的QTL分析   总被引:2,自引:0,他引:2  
在大田直播条件下,利用来源于"Lemont/特青"的重组自交系群体,对水稻6个穗部性状及其相互间遗传相关的分子基础进行了QTL分析,共检测到19个QTL,各性状QTL数为2~4个,单个QTL贡献率为4%~22%。共检测到3个染色体区段能同时影响多个穗部性状,其中第1染色体RM212-RM104和第2染色体RM263-RM221区段的QTL能同时影响单株产量、每穗颖花数、着粒密度和二次枝梗数中的3个或4个性状,且这2个区段的QTL对各性状的效应方向相同,增效等位基因均来自‘特青’,为各性状间表型正相关提供了重要的遗传解释。第11染色体RG1022附近的QTL对着粒密度的效应值为负,来自‘特青’的等位基因增加性状值,而对穗长的效应值为正,来自‘特青’的等位基因降低性状值,为这2个性状间表型负相关也提供了一定的遗传解释。此外,对水稻穗部性状QTL在多种环境和遗传背景下的稳定表达及其在分子标记辅助育种中的应用进行了讨论。  相似文献   

10.
以自交系PHB47为轮回亲本,美国GEM种质YUCATAN TOL389 ICA为供体,构建包含115个株系的BC3F4群体为材料,利用玉米56K SNP芯片鉴定基因型,采用基于似然比测验的逐步回归分析法,对产量相关性状进行QTL定位分析。共获得7个穗粒数、穗长、粒宽、株高和穗位高加性QTL,解释3.72%~21.90%的表型变异;5个控制单穗重、百粒重、穗长和株高的显性QTL,表型变异解释率为8.40%~21.90%。同时,利用Meta-QTL分析方法,对2005-2018年已发表的不同环境条件下产量相关性状QTL的定位结果进行了整合分析。在正常田间管理条件和营养胁迫条件分别获得37个和16个MQTL。本研究中穗位高加性位点AX-116871591位于MQTL16区段内,并且与MQTLNP7位置相近,该区段内包含生长素/脱落酸转录因子IAA5。穗粒数加性位点AX-86281411,粒宽加性位点AX-86267702和株高显性位点AX-116875920均位于MQTLNP9区段内,该区段内包含NAC转录因子NACTF36。NAC转录因子、MYB转录因子和SOD基因均存在于两个环境条件MQTL区段内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号