首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An accurate, sensitive, and quick (approximately 3 h) method for determining the sex of ovine embryos was developed using polymerase chain reaction (PCR) primers derived from an ovine-specific Y-chromosome random amplified polymorphic DNA marker ( UcdO43 ). The accuracy and sensitivity of the assay were first tested using genomic DNA from 10 males and 10 females of five different sheep breeds, and then tested using serial dilutions of male-in-female DNA. The assay was 100% accurate in confirming the sex of the individuals and the ovine male-specific fragment was detected in dilutions containing as little as 10 pg of male DNA in 50 ng of female DNA. The assay was also confirmed to be specific for the ovine Y-chromosome as bovine, caprine, porcine, murine, and human DNA did not amplify. The ovine embryo sexing method is a duplex PCR system that also includes ZFY/ZFX primers. ZFY/ZFX provide an internal positive control for amplification as well as a means to confirm the results obtained with the UcdO43 primers. All embryo sexing results (36/36) from our method were in agreement with the ZFY/ZFX assay results. However, while our method requires an internal control to detect PCR failure, it has the advantages of not requiring nested PCR or restriction endonuclease digestion of the PCR product, and concerns about cross-species contamination are eliminated.  相似文献   

2.
Buffalo Y-chromosome specific repetitive DNA (BuRY.I) was cloned and sequenced in order to develop a sensitive method for sexing of buffalo preimplantation stage embryos using polymerase chain reaction (PCR). A highly sensitive and reliable sex determination assay using a primary (BRY.I), nested (BuRYN.I) and multiplex (BuRYN.I, ZFX/ZFY) PCR was developed. The BRY.I and BuRYN.I primers are targeted to amplify Y-specific sequences, while the ZFX/ZFY loci was amplified to serve as a positive control for both male and female samples. Accuracy of the sex determination assay was initially verified with genomic DNA obtained from blood of known gender. Further sensitivity and reproducibility of the assay was examined using DNA obtained from 1 or 2 blastomeres to demi embryos. Altogether, 80 IVF-derived embryos ranging from the 2 to 4 cell to the blastocyst stage were used for sex determination. Definite and clear signals following PCR amplification were obtained from all embryo samples. Accuracy of assays was determined by comparing results from a single cell with those of blastocyst stage embryos, thereby indicating that 1 or 2 blastomeres from a preimplantation buffalo embryo is sufficient for sex determination by PCR. No misidentification was observed within the embryo samples using nested (BuRY.I), primary (BRY.I) and multiplex (BuRYN.I; ZFX/ZFY) PCR, suggesting that this technique is a highly reliable method for sexing buffalo embryos.  相似文献   

3.
Sex determination of bovine embryo blastomeres by fluorogenic probes   总被引:7,自引:0,他引:7  
One of the major challenges of using genetic information in marker assisted selection (MAS) is the detection of multiple marker loci from a small biopsy sample of a preimplantation stage embryo. The objective of this study was to develop a fast, nested, multiplex preamplification, polymerase chain reaction (PCR) method for the determination of sex in bovine embryo blastomeres. For this aim, ZFX/ZFY sequences were preamplified simultaneously with other genomic regions. The preamplification product was used as a template in an allelic discrimination assay, with nested primers and sex specific fluorogenic probes for ZFX and ZFY. Fluorogenic probes were used to eliminate the need for time consuming electrophoresis. Compared to sexing with Bovy/kappa-casein co-amplification method and other replicates from the same embryo, the accuracy of sexing with the use of fluorogenic probes after preamplification was 99% (112/113 blastomeres). The amplification efficiency was 96% (113/117 blastomeres).  相似文献   

4.
We present a polymerase chain reaction (PCR)-based procedure for rapid bovine embryo sexing and classifying embryos for the presence of exogenous DNA. Fourteen bovine blastocysts microinjected with gene construct DNA at the pronuclear stage were divided into quarters and subjected to amplification with construct-specific and sex gene-specific (ZFY/ZFX) primers in the same initial PCR reaction. Blastocysts carrying microinjected construct DNA could be identified by the presence of construct-specific PCR product in approximately 4 h. Approximately half of the microinjected and two of 16 non-microinjected blastocysts typed PCR-positive for the construct DNA. Owing to erroneous amplifications in the two non-microinjected control blastocysts, and the inability of the system to distinguish integrated from non-integrated copies of the microinjected construct, the number of construct-positive blastocysts determined in our assay most likely overestimates the number of true transgenic embryos. Nevertheless, using this assay, we were able to determine that approximately half of the microinjected embryos were negative for the transgene construct and thus could be eliminated from transfer to a recipient cow. Embryo sexing was achieved in less than 6 h by restriction fragment length polymorphism analysis of nestedZFY/ZFXPCR products reamplified from initial PCR reactions. In 11/14 microinjected blastocysts all sections assayed unambiguously as the same sex. In one embryo, only one section was analysed, while two other blastocysts whowed some discrepancies of sexing results between the sections analysed. The approach employed here to determine the sex and presence of microinjected construct DNA in bovine preimplantation embryos is rapid, accurate among different sections of an embryo and can be used to increase the efficiency of current transgenic cattle production procedures.  相似文献   

5.
Sequence polymorphism of homologues ZFX and ZFY, in a 604-base pair exon region, was examined in 10 known males and 10 known females across seven cetacean families and used to design a simple, highly sensitive and widely applicable fluorescent 5' exonuclease assay for gender determination in cetaceans. Multiplex amplification, cloning, and sequencing of these previously uncharacterized regions revealed (i) eight fixed differences between ZFX and ZFY, (ii) 29 variable sites between ZFX and ZFY and (iii) very low interspecific nucleotide diversity for both ZFX and ZFY across all families examined. We developed a 5' exonuclease assay that produces a small (105 bp) polymerase chain reaction (PCR) product from both the X and the Y chromosome orthologs, and used double-labelled fluorescent probes to distinguish between the two genes in a real-time PCR assay that is highly reproducible and sensitive. We demonstrated sex specificity for 33 cetacean species in nine families. Given the availability of conserved primers and sequence information for many mammalian species, this approach to designing sexing assays for a wide range of species is both practical and efficient.  相似文献   

6.
A rapid and reliable method for sex determination of preimplantation-stage equine embryos has not been available. The aim of the present study was to find an enzyme which would distinguish sexes in the horse by finding a polymorphic restriction site between the ZFY and ZFX homologues amplified by the polymerase chain reaction (PCR). Altogether, 38 different restriction enzymes were tested using female and male DNA extracted from blood. The primers used for amplification were selected from conserved sequences between human ZFY and ZFX genes and mouse Zfy-1 and Zfy-2 genes. Nine enzymes cut the PCR product of approximately 450 basepairs, but only Bsm I yielded different banding patterns in female and male DNA. All blood samples were correctly diagnosed. To test the method on embryonic cells, 17 horse demi-embryos were obtained from expanding blastocysts 220 to 950 mum in diameter. Demi-embryos were further cut into 3 to 7 parallel samples which were analyzed individually to test the repeatability of the method. Eight of the original embryos were diagnosed as females and 9 as males. No misidentifications were observed within the embryonic samples, suggesting that this sexing method is highly reliable. This study provides a rapid and accurate method to sex horse embryos.  相似文献   

7.
Twenty-one in vitro-fertilized bovine blastocysts were quartered, lysed and subjected to primer elongation preamplification (PEP) procedure, allowing for the analysis of up to 40 genotypes per quarter embryo. The quarter-embryos were sexed by polymerase chain reaction (PCR) using BRY.1, Bov97M and ZFX/ZFY loci, and then genotyped for k-casein, bovine leukocyte adhesion deficiency (BLAD) and microsatellite D9S1. The mitochondrial cytochrome B locus was used as an internal control with a 95% success rate. The PEP procedure amplified genomic fragments in 93% of all cases. The embryos were identified to be 11 males and 10 females. Sexing accuracy was 87% for BRY.1, 97% for ZFX/ZFY and 100% for Bov97M. False genotyping was due mostly to amplification of BRY.1 in the female embryos and to the nonamplification of the ZFY locus in the male embryos. The results indicate that the combined use of Bov97M and ZFX/ZFY loci is a highly accurate procedure for sexing bovine embryos. Genotyping for kappa-casein, D9S1 and BLAD was successful in 94, 99 and 91% of assays, respectively. Sex ratios and allele frequencies of embryos for gk-casein, BLAD and D9S1 were all close to the observed frequencies in the Israeli Holstein population. These results support the conclusion that the genotyping of embryos is as accurate as that of mature animals. Thus, marker-assisted selection can be efficiently applied at the preimplantation embryo level for loci of economic importance.  相似文献   

8.
The aim of this study was to identify a simple, rapid method for sex determination of in vitro produced buffalo embryos, amplifying Y-chromosome-specific repeat sequences by polymerase chain reaction (PCR). Buffalo oocytes collected from slaughtered animals were matured, fertilised and cultured in vitro for 7 days. On day 7 embryos were evaluated and divided in to six groups according to developmental stage (2, 4, 8, 16 cells, morulae and blastocyst). Each embryo was stored singly in phosphate-buffered saline at -20 degrees C until PCR. Two different methods of extraction of DNA were compared: a standard procedure (ST), using a normal extraction by phenol-chloroform, isoamyl alcohol and final precipitation in absolute ethanol and a direct procedure (DT), using a commercial kit (Qiaquik-Qiagen mini blood). A pair of bovine satellite primers and two pairs of different bovine Y-chromosome-specific primers (BRY4.a and BRY.1) were used in the PCR assay on embryos and on whole blood samples collected from male and female adult buffaloes, used as control. The trial was carried out on 359 embryos (193 for ST and 166 for DT). When DNA samples from blood were amplified, the sex determined by PCR always corresponded to the anatomical sex. Embryo sexing was not possible in two embryos in ST and one embryo in DT. Both extraction protocols recovered sufficient quantities of target DNA at all developmental stages, but the time required for the ST (24 h) limits its use in embryo sexing and supports the use of commercial extraction kits (5 h).  相似文献   

9.
A growing body of evidence suggests the involvement of sex chromosome genes in mammalian development. We report the cloning and characterization of the complete coding regions of the bovine Y chromosome ZFY and X chromosome ZFX genes, and partial coding regions of porcine and equine ZFX and ZFY genes. Bovine ZFY and ZFX are highly similar to each other and to ZFX and ZFY from other species. While bovine and human ZFY proteins are both 801 amino acids long, bovine ZFX is 5 amino acids shorter than human ZFX. Like in humans, both bovine ZFY and ZFX contain 13 zinc finger motifs and belong to the Krueppel family of C2H2-type zinc finger proteins. The internal exon-intron organization of the bovine, porcine and equine ZFX and ZFY genes has been determined and compared. Within this region, the exon lengths and the positions of the splice sites are conserved, further suggesting a high evolutionary conservation of the ZFX and ZFY genes. Additionally, new alternatively spliced forms of human ZFX have been identified.  相似文献   

10.
A sensitive technique for the sexing of bovine embryos was developed using polymerase chain reaction (PCR) amplification of the bovine amelogenin (bAML) gene on the X- and Y-chromosomes of Holstein dairy cattle. Cloning and DNA sequencing showed a 45.1% homology between the fifth intron of the bAML-X and bAML-Y gene with multiple deletions. A pair of sex-specific primers was designed to allow amplification of a single fragment of 467-bp from the X-chromosome of female cattle and two fragments of 467-bp and 341-bp from the X- and Y-chromosomes of male cattle. The primers were successfully applied to bovine sexing from single blastomeres isolated from day-6 to day-7 cow embryos by direct cell lysis and PCR. Our protocol of embryo sexing should be applicable to the diagnosis of defective genes in vitro in human embryos and in other domestic or recreational animals.  相似文献   

11.
This study was conducted to determine the sex of buffalo embryos produced in vitro by amplifying male specific DNA sequences using the polymerase chain reaction (PCR). This method uses three different pairs of bovine Y-chromosome specific primers and a pair of bovine satellite specific primers. Buffalo in vitro fertilized embryos at the 4-cell to blastocyst stage were collected at days 3, 4, 6, and 8 postinsemination, and the sex of each embryo was determined using all three different Y-chromosome specific primers. The bovine satellite sequence specific primers recognize similar sequences in buffalo and are amplified both in males and in females. Similarly, Y-chromosome specific primers amplify the similar Y-chromosome specific sequences in male embryos of buffalo. Upon examining genomic DNA from lymphocytes of adult males and females, and embryos, the results demonstrate the feasibility of embryo sexing in buffaloes. Furthermore, sex determination by PCR was found to be a rapid and accurate method. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Abstract

Sex of preimplantation porcine embryos was determined by DNA amplification using porcine male(Y chromosome)‐specific DNA primers in the polymerase chain reaction (PCR). In order to determine the sensitivity of this sexing method, single porcine embryos ranging from unfertilized ova to the blastocyst stage were amplified in the PCR using the Y‐specific primers, and analyzed by ethidium bromide‐staining of polyacrylamide gels. The 192 bp product which denotes the presence of the Y chromosome was seen in the embryos. The unfertilized ova which is of female origin gave no product. These results are representative of PCR analysis of a total of 34 swine embryos.

Results obtained using the PCR for sexing were validated by karyotyping and confirmed by in situ hybridization with the porcine Y‐chromosome‐specific probe. In order to confirm the sex of the embryos determined by PCR, 10 day‐old porcine preimplantation embryos were biopsied to produce a small number of cells for sex determination via PCR, while the remainder of the embryo was prepared for in situ hybridization using the biotinylated probe. In situ hybridization performed on embryos shown to be male by PCR, showed pinpoint fluorescence within the nuclei, similar to that obtained when male porcine lymphocytes were hybridized. No evidence of fluorescence was seen when in situ hybridization was performed in parallel on embryos determined to be female by the PCR.

The PCR was found to be a relatively fast, accurate and reproducible means of sex determination of swine preimplantation embryos. This capability could have significant impact on animal breeding and production programs by using PCR as a screening tool for traits of economic importance.  相似文献   

13.
We have developed a polymerase chain reaction (PCR)-based method for accurate sex determination of preimplantation bovine embryos. The method utilizes three different sets of primers in the PCR. The first pair of primers recognizes the bovine-specific satellite sequence that is amplified in both females and males. In addition, two pairs of primers recognize bovine Y chromosome-specific sequences that are amplified in males only. Duplicate embryo extracts were used in the PCR; the first sample was run in the presence of bovine-specific as well as one set of the Y chromosome-specific primers; the second sample was run in the presence of the other male-specific primers. The method has been specifically designed for screening bovine embryos. Based upon examining blood cell DNA from adult males and females, the assay is extremely accurate, as no single incorrect result has occurred yet. Missing samples were easily detected by the absence of the bovine-specific signal. The method has been used for the transfer of bovine embryos on which sex determinations have been performed.  相似文献   

14.
A method for determining the sex and milk protein genotypes (RFLPs) of preimplantation stage bovine embryos using multiplex polymerase chain reaction (PCR) is described. Day 6 to 7 embryos were micromanipulated to isolate 5 to 6 cells. These cells were then dried in reaction tubes for transport to the laboratory. Subsequently, two sets of PCRs were performed using Y chromosome, k-casein and beta-lactoglobulin gene specific primers, followed by electrophoretic analysis of the PCR products. The presence or absence of the Y chromosome was ascertained in 90 of 92 embryos. Moreover, the k-casein specific fragment was amplified and detected in all these embryos. The PCR products were digested in order to genotype the k-casein gene. In 70% of the embryos, the beta-lactoglobulin specific fragment was amplified, although together with some unspecific fragments.  相似文献   

15.
Splitting and biopsy for bovine embryo sexing under field conditions.   总被引:2,自引:0,他引:2  
Improvements on embryo micromanipulation techniques led to the use of embryo bisection technology in commercial embryo transfer programs, and made possible the direct genetic analysis of preimplantation bovine embryos by biopsy. For example, aspiration and microsection, allow bovine embryos sexing by detection of male-specific Y-chromosome in a sample of embryonic cells. We report on the application of the methodologies of splitting and biopsy of bovine embryos in field conditions, and on the results of embryo sex determination by the polymerase chain reaction (PCR). Pregnancy rates achieved with fresh bisected or biopsied embryos (50 to 60%) were similar to the fresh intact embryos (55 to 61%). The PCR protocol used for embryo sexing showed 92% to 94% of efficiency and 90 to 100% of accuracy. These results demonstrate these procedures are suitable for use in field conditions.  相似文献   

16.
Detection of genes known to be present on the mammalian Y chromosome was adapted for sexing mouse early embryos using the polymerase chain reaction (PCR) method. Sry and Zfy genes located in the sex-determining region of the Y chromosome were chosen for Y-specific target sequences, and DXNds3 sequence on the X chromosome was chosen for control. The two-step PCR method using two pairs of primers for each of the target sequences was employed for detecting the sequences. When DNAs of male and female mice were amplified with these primers, male-specific fragments were detected even in DNAs that were equivalent in amount to two cells. Mouse embryos at the two-cell stage were separated into two individual blastomeres, and one blastomere was karyotyped at the second cleavage. The remaining blastomere was subjected to PCR amplification immediately or after having been cultured for 48 h up to the morula stage. The Sry and Zfy sequences were detected in about half the embryos; detection of the Sry and Zfy sequences corresponded exactly to the presence of the Y chromosome, except in one sample of male morula in which embryos may have been lost before the PCR amplification. It is concluded that the sex of mouse preimplantation embryos can be accurately determined through detection of the Y-specific sequences using the two-step PCR method, even with the single blastomeres separated at the two-cell stage.  相似文献   

17.
Embryo biopsy has been used to detect inherited disorders and to improve the phenotype by analyzing of linkages between marker loci and the desired characteristics. Unfortunately, early procedures required the removal of a large portion (one-half) of the embryo for analysis, and the transfer of bisected equine embryos has not been particularly successful. Recent discovery of the polymerase chain reaction (PCR) has made possible the detection of specific DNA sequences from only a few cells. We investigated whether the removal of a small biopsy would allow for successful PCR and normal embryonic development. In the study reported here, 14 microbladebiopsied Day 6 to 7 equine embryos were transferred nonsurgically into recipient mares. The sex of each embryo was determined from the biopsy by means of restriction fragment length polymorphism analysis of the ZFY/ZFX loci after PCR amplification. The embryos were sexed as 8 females and 6 males on the basis of PCR assay results. Two embryos were biopsied using a needle aspiration technique, but no PCR amplification products resulted from these attempts. Eight intact control embryos were transferred to recipient mares using the same method. Pregnancy rates were 3 14 and 6 8 for the microblade biopsy and control groups, respectively. All of the microblade biopsy group pregnancies were females. One was aborted for cytogenetic analysis. Two were born after normal gestation. With improved pregnancy rates, this technique could be used for preimplantation diagnostics of equine embryos. As gene mapping advances and associations between particular DNA sequences and inherited traits become established, a rapid PCR technique could be used to select embryos before transfer.  相似文献   

18.
19.
Qiao Y  Zou F  Wei K  Yue B 《Zoological science》2007,24(5):493-495
We describe a rapid sex-identification method for the forest musk deer (Moschus berezovskii) using PCR based on zinc-finger protein-encoding genes (ZFX/ZFY) located on the X and Y chromosomes. Fragments of the ZFX and ZFY genes were amplified and sequenced. The ZFX and ZFY fragments were identical in length and 94% similar in nucleotide sequence. Specific primers for forest musk deer sex identification were designed on the basis of sequence differences between ZFX and ZFY. All the primers were multiplexed in single-tube PCR. Both male and female forest musk deer showed amplification bands of 447 bp and 212 bp separated in agarose gels. A sex-specific 278-bp band was amplified only from males. These results show that testing by PCR for the presence of the 278-bp sequence is a rapid and reliable method for sex identification.  相似文献   

20.
Abstract: We evaluated the ability of a set of published trans-species molecular sexing primers and a set of walrus-specific primers, which we developed, to accurately identify sex of 235 Pacific walruses (Odobenus rosmarus divergens). The trans-species primers were developed for mammals and targeted the X- and Y-gametologs of the zinc finger protein genes (ZFX, ZFY). We extended this method by using these primers to obtain sequence from Pacific and Atlantic walrus (O. r. rosmarus) ZFX and ZFY genes to develop new walrus-specific primers, which yield polymerase chain reaction products of distinct lengths (327 and 288 base pairs from the X- and Y-chromosome, respectively), allowing them to be used for sex determination. Both methods yielded a determination of sex in all but 1–2% of samples with an accuracy of 99.6–100%. Our walrus-specific primers offer the advantage of small fragment size and facile application to automated electrophoresis and visualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号