首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响   总被引:13,自引:0,他引:13  
大气CO2浓度升高对植物光合作用的影响研究多集中在单叶水平,在高CO2及高温下对植物单叶及群体光合进行比较的研究少有报道,而群体水平的研究则是预测生态系统反应所不可缺少的。采用田间开顶式培养室研究了大气CO2浓度和温度升高对水稻(OryzasativaL.)叶片及群体光合作用的影响。发现CO2浓度和温度对水稻叶片光合作用有协同促进作用,而对群体光合作用的促进则随时间的推移而减弱;单叶光合受到的促进作用大于群体光合;叶面积指数只在营养生长期受到促进,冠层叶片含氮量受CO2影响降低。群体呼吸(包括茎杆)增加及冠层叶片早衰可能是后期CO2对群体光合促进作用下降的原因。  相似文献   

2.
大气一氧化碳浓度升高对植物生长的影响   总被引:20,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

3.
全球CO2浓度变化与植物的化感作用   总被引:25,自引:0,他引:25  
王大力 《生态学报》1999,19(1):122-127
CO2浓度升高会使植物同化物在体内的含量和分配发生变化,这种变化会影响到植物的某些生理代谢功能,进而影响植物次生代谢物质的形成和分泌,就大气CO2浓度升高和温度增加将如何影响植物叶片及根系次生代谢物、化感物质、植物残体腐解以及化感作用进行了论述,同时针对目前研究现状和未来可持续农业的需要提出了大气CO2浓度变化下植物化感作用的优先研究领域。  相似文献   

4.
CO2浓度加倍对光合色素含量的影响CO2浓度加倍有利于植物叶片单位鲜重或单位叶面积的叶绿素和类胡萝卜素含量的提高。叶绿素含量的提高,显然有助于植物捕获更多光能供光合作用所利用。因为在CO2浓度加倍条件下,植物要充分利用环境资源,增加对CO2的同化,需要通过增加叶片叶绿素的含量,或扩大叶面积来提高对光能的捕获能力,以满足碳同化时能量的需求。此外,CO2浓度加倍;能降低叶绿素a/b比值,说明它更有利形成叶绿素b。以含等量叶绿素的叶绿体所作的实验表明,来自生长在CO2浓度加倍条件下的植物叶绿体,对光能…  相似文献   

5.
本文针对国外近十几年来在CO2浓度升高对植物的直接影响方面所开展的生理生态学研究方法、动态、基本结论、存在问题等内容做了简要的介绍。大气CO2浓度在过去200年内已增加了80μmol·mol-1,生长在高CO2环境下的植物,其生理生态、形态及化学成分等方面将会发生相应的变化。表现在光合作用速率出现不同程度的提高;呼吸作用受抑制;气孔密度减少,水分利用效率增加;生物量及产量增加;一些关键蛋白质及酶、非结构性碳水化合物含量增加;组织中的氮、硫等元素含量降低;根系及花的发育也随CO2浓度的升高而提前等。不同光合途径(C3、C4及CAM)及不同植被类型(自然植被、栽培植被)的植物随CO2浓度发生的上述指标的变化在长期反应与短期反应方面具有很大的差异。另外,实验控制条件如温度、光照、水分、养分甚至实验装置(如花盆)的大小对预测结果也有很大的影响。  相似文献   

6.
大气CO2增加对土壤脲酶、磷酸酶活性的影响   总被引:25,自引:6,他引:19  
1 引  言自 19世纪 70年代工业化革命以来 ,由于化石燃料燃烧、林草地开垦农用等已引起CO2 大气排放的不断增加 ,可能使未来的 5 0~ 10 0年内 ,全球大气CO2 将增加 1倍左右 .许多研究证明 ,大气CO2 增加可提高植物生长代谢水平[1,8] .其结果是植物代谢分泌物的种类和数量发生变化 ,由植物光合作用强度或速率变化引起的植物枯枝落叶质量也会改变 ,二者均可能在经泌入土壤或凋落进入土壤分解后 ,对植物着生的土壤环境产生直接或间接的影响 .植物对大气CO2 增加的响应途径还有根圈微生物种群 (植物根圈大量活性C组分将直接作为微…  相似文献   

7.
大气CO2浓度升高与森林群落结构的可能性变化   总被引:6,自引:1,他引:5  
赵平  彭少麟 《生态学报》2000,20(6):1090-1096
大气CO2浓度升高的所引起的森林生态系统稳定性的变化会导致森林在结构和功能上的变动,概述了大气CO2浓度升高和陆地森林生态系统可能性变化之间的相互关系的研究情况。由于大气CO2浓度升高出现了额外多的C,供应,讨论了以这些额外多的C经大气-植物-土壤途径的流动走向,来研究大气CO2浓度的升高,与森林结构的相互作用,探讨了大气CO2浓度升高对森林植物生长、冠层结构、引发的生物量增量的分配、凋落物质量和  相似文献   

8.
CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响   总被引:8,自引:0,他引:8  
关于大气CO2浓度倍增(即为700μmolCO2·mol-1空气)将对植物生长产生诸多影响,已有大量报道[1,2]。但CO2倍增对植物及所在土壤中微生物影响的研究甚少[3,4]。土壤微生物是陆地生态系统中最活跃的成分,担负着分解动植物残体的重要作用,...  相似文献   

9.
王大力  林伟宏 《生态学报》1999,19(4):570-572
在大气CO2浓度升高条件下采用水培方法对水稻根系生长及根系分泌物进行了初步研究,CO2浓度倍增对水培水稻的根系生长具有明显的促进作用,约为70%,但是根冠比却有所降低,水稻根系单位干重总有机碳,乙酸以及甲酸的释放量在CO2浓度倍增条件下变化不明显,但是单株奶系分泌物总量,乙酸以及甲酸的释放总量在CO2倍增处理下明显增加,推测水稻根系分泌物的增加是高浓度CO2下稻田CH4排放增加的重要原因之一。  相似文献   

10.
CO_2浓度倍增对牟氏角毛藻生长和光合作用的影响   总被引:7,自引:0,他引:7  
高浓度(5%)CO2对微藻光合作用特征和固碳机制的影响已有了广泛的研究,但CO2提高数倍对微藻的影响报道还不多。本文以牟氏角毛藻为材料,研究其在CO2浓度倍增条件下(700uLL-1)的生长和光合作用特点,以期了解CO2浓度的倍增影响微藻类的生理生化效应和机制。另外,牟氏角毛藻是常用的饵料藻种,含有丰富的多不饱和脂肪酸[1],所以还有一定的实践意义。1 材料与方法1.1 材料与培养 牟氏角毛藻(ChaetocerosmuellerimueleriLemm.)由中国科学院海洋研究所提供。对数生长期的藻…  相似文献   

11.
With rising level of CO2 in the atmosphere plants are expected to be exposed to higher concentration of CO2. Since, CO2 is a substrate limiting photosynthesis particularly in C3 plants in the present atmosphere, the impact of elevated CO2 would depend mainly on how photosynthesis acclimates or adjusts to the long term elevated level of CO2. Photosynthetic acclimation is a change in photosynthetic efficiency of leaves due to long term exposure to elevated CO2. This change in photosynthetic efficiency could be a biochemical adjustment that may improve the overall performance of a plant in a high CO2 environment or it could be due to metabolic compulsions as a result of physiological dysfunction. Acclimation has generally become synonymous with the word response, if long term exposure to elevated CO2 decreases the photosynthesis rate (Pn) at a given CO2 level, it is called negative acclimation, if it stimulates Pn at a given CO2 level, it is called positive acclimation. Photosynthetic acclimation is clearly revealed by comparing Pn of ambient and elevated CO2 grown plants at same level of CO2. Species level differences in acclimation to elevated CO2 have been reported. The physiological basis of differential photosynthetic acclimation to elevated CO2 is discussed in relation to the regulation of photosynthesis and photosynthetic carbon partitioning at cellular level.  相似文献   

12.
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度、2个光照强度和2个氮水平的组合处理,通过测定小麦叶片光合速率-胞间CO2浓度响应曲线和叶绿素荧光参数,来测算小麦叶片光化学速率、光合电子传递速率以及叶绿体磷酸丙糖利用效率(TPU)等参数,研究施氮量和光强对高大气CO2浓度下小麦旗叶光合能量传递与分配的影响,以阐明全球气候变化下植物光合能量分配对光合作用适应性下调的作用机制及其氮素调控。结果表明,大气CO2浓度升高后小麦叶片的光呼吸电子传递速率(J0)和Rubisco氧化速率(V0)显著下降;光合电子流的光化学传递速率(JC)、Rubisco羧化速率(VC)和TPU则明显升高,而且施氮后变化幅度加大;小麦叶片JC/JF(PSⅡ反应中心总电子流速率)和TPU/VC显著增加,经过PSⅡ反应中心的电子流更多地进入碳同化过程,表现较高的光合速率(Pn)。遮荫提高了叶片光化学速率和PSⅡ反应中心总电子流速率(JF),这一作用在低氮叶片尤为突出,但使得J0V0明显升高,并显著降低JC/JF,所以Pn明显下降。正常光照条件下,增施氮素可提高小麦叶片的JFJCVCTPU,并使高大气CO2浓度下J0V0较正常大气CO2浓度处理显著降低,有效地提高了植物叶片对光能的利用效率;遮荫后高大气CO2浓度下小麦叶片JCVCTPUJC/JFTPU/VC显著高于正常大气CO2浓度处理,而且这一变化不受氮素水平的显著调节。因此,氮素在高大气CO2浓度下对小麦叶片光合能量利用的调节因光强而异,正常光照下可显著改善小麦叶片对光合能量的利用状况,而遮荫后这一作用减弱。  相似文献   

13.
This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2].  相似文献   

14.
高浓度二氧化碳对植物影响的研究进展   总被引:19,自引:0,他引:19  
工业革命后全球大气CO2浓度持续上升,不仅对全球气候的变迁产生重大影响,而且对植物的形态、水分利用、蛋白质合成、光合、抗性、生长及生物量等都有不同程度的影响。高浓度CO2促进植物根、幼苗的生长,叶片增厚,降低气孔密度、气孔导度及蒸腾速率,增加水分利用效率、作物的产量及生物量,促进乙烯生物合成,增强植物的抗氧化能力。不同光合途径(C3、C4及CAM)及不同植被类型的植物对高浓度CO2的响应不同。长期和短期的高浓度CO2处理,植物响应方式有很大的差异,如短期高CO2处理使光合能力增强,而长期处理则使光合能力下调。  相似文献   

15.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

16.
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

17.
The acclimation of C(4) photosynthesis to low temperature was studied in the montane grass Muhlenbergia montana in order to evaluate inherent limitations in the C(4) photosynthetic pathway following chilling. Plants were grown in growth cabinets at 26 degrees C days, but at night temperatures of either 16 degrees C (the control treatment), 4 degrees C for at least 28 nights (the cold-acclimated treatment), or 1 night (the cold-stress treatment). Below a measurement temperature of 25 degrees C, little difference in the thermal response of the net CO(2) assimilation rate (A) was observed between the control and cold-acclimated treatment. By contrast, above 30 degrees C, A in the cold-acclimated treatment was 10% greater than in the control treatment. The temperature responses of Rubisco activity and net CO(2) assimilation rate were similar below 22 degrees C, indicating high metabolic control of Rubisco over the rate of photosynthesis at cool temperatures. Analysis of the response of A to intercellular CO(2) level further supported a major limiting role for Rubisco below 20 degrees C. As temperature declined, the CO(2) saturated plateau of A exhibited large reductions, while the initial slope of the CO(2) response was little affected. This type of response is consistent with a Rubisco limitation, rather than limitations in PEP carboxylase capacity. Stomatal limitations at low temperature were not apparent because photosynthesis was CO(2) saturated below 23 degrees C at air levels of CO(2). In contrast to the response of photosynthesis to temperature and CO(2) in plants acclimated for 4 weeks to low night temperature, plants exposed to 4 degrees C for one night showed substantial reduction in photosynthetic capacity at temperatures above 20 degrees C. Because these reductions were at both high and low CO(2), enzymes associated with the C(4) carbon cycle were implicated as the major mechanisms for the chilling inhibition. These results demonstrate that C(4) plants from climates with low temperature during the growing season can fully acclimate to cold stress given sufficient time. This acclimation appears to involve reversal of injury to the C(4) cycle following initial exposure to low temperature. By contrast, carbon gain at low temperatures generally appears to be constrained by the carboxylation capacity of Rubisco, regardless of acclimation time. The inability to overcome the Rubisco limitation at low temperature may be an inherent limitation restricting C(4) photosynthetic performance in cooler climates.  相似文献   

18.
The initial stimulation of photosynthesis observed on elevation of [CO2] in grasslands has been predicted to be a transient phenomenon constrained by the loss of photosynthetic capacity due to other limitations, notably nutrients and sinks for carbohydrates. Legumes might be expected partially to escape these feedbacks through symbiotic N2 fixation. The Free-Air Carbon dioxide Enrichment (FACE) experiment at Eschikon, Switzerland, has been the longest running investigation of the effects of open-air elevation of [CO2] on vegetation. The prediction of a long-term loss of photosynthetic capacity was tested by analysing photosynthesis in Trifolium repens L. (cv. Milkanova) in the spring and autumn of the eighth, ninth and tenth years of treatment. A high and low N treatment also allowed a test of the significance of exogenous N-supply in maintaining a stimulation of photosynthetic capacity in the long-term. Prior work in this Free Air CO2 Enrichment (FACE) experiment has revealed that elevated [CO2] increased both vegetative and reproductive growth of T. repens independent of N treatment. It is shown here that the photosynthetic response of T. repens was also independent of N fertilization under both current ambient and elevated (600 micro mol mol-1) [CO2]. There was a strong effect of season on photosynthesis, with light-saturated rates (Asat) 37% higher in spring than in autumn. Higher Asat in the spring was supported by higher maximum Rubisco carboxylation rates (Vc,max) and maximum rates of electron transport (Jmax) contributing to RuBP regeneration. Elevated [CO2] increased Asat by 37% when averaged across all measurement periods and both N fertilization levels, and decreased stomatal conductance by 25%. In spring, there was no effect of elevated [CO2] on photosynthetic capacity of leaves, but in autumn both Vc,max and Jmax were reduced by approximately 20% in elevated [CO2]. The results show that acclimation of photosynthetic capacity can occur in a nitrogen-fixing species, in the field where there are no artificial restrictions on sink capacity. However, even with acclimation there was a highly significant increase in photosynthesis at elevated [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号