首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
花楸树种子散布、萌发与种群天然更新的关系   总被引:3,自引:1,他引:2  
花楸树是我国东北林区重要的非木质资源树种,其实生天然更新不良.本文通过研究花楸树种子散布、土壤种子库及种子萌发出土过程,分析花楸树实生天然更新的影响因素.结果表明:自然散落的花楸树果实96.1%分布于母株2 m范围内,凋落物层和土壤表层(0~2 cm)的种子数占土壤种子库总数的97.0%;不同季节花楸树土壤种子库种子数量差别很大,当年11月上旬种子数量最多,达(257.7±69.2)粒.m-2;翌年7月下旬种子数量最少,仅为(2.9±2.9)粒.m-2;温度不是花楸树种子萌发出土过程的限制因子,0℃~5℃时幼苗出苗率达(67.5±6.6)%,但对其出苗速率影响显著.土壤含水量为50%时,花楸树出苗率最高,达(74.7±4.2)%;含水量为60%时,幼苗死亡率最低,为(32.6±0.6)%.花楸树种子的散布格局和土壤种子库的时空分布格局影响种子的萌发出土过程,进而影响其种群的天然更新.  相似文献   

2.
长久性紫茎泽兰土壤种子库   总被引:38,自引:4,他引:34  
 具有长久性土壤种子库的植物在适应多变的生境和不良的生长条件方面具有优越性。于紫茎泽兰(Eupatorium adenophorum)的主要萌发时段后(7月到次年的4月间)在云南的5个地点采集了共19个不同植被覆盖下的土壤种子库样本,萌发实验结果表明,紫茎泽兰具有长久性的土壤种子库,其在云南的不同生境的土壤中广泛分布,所有19个样地中都有长久性的紫茎泽兰种子。 0~10 cm土层的种子密度变动于47~13 806 ind.·m-2,平均为2 202 ind.·m-2。种子密度与样地内地表的紫茎泽兰间没有直接的联系,但与植被的覆盖状况有关,种子库密度由滑坡堆积物(47 ind.·m-2)到草地(801 ind.·m-2)到灌丛(2 349 ind.·m-2)到森林(3 255 ind.·m-2)间逐渐增加。种子在各种类型土壤的采样点间出现的频度为60%~100%。在土壤的垂直方向上,0~2 cm土层分布有较多的种子,2~5 cm土层次之,5~10 cm土层最少,其各层占总数的比例的平均值分别为56.1%、25.2%和18.6%。但值得注意的是,虽然紫茎泽兰的种子在5~10 cm 深的土层内的存在量占总量的比例相对较少,但如果折合成密度值,其量仍高达270 ind.·m-2,仍有形成危害的潜在可能。广泛分布且数量巨大的具有长久性特性的紫茎泽兰土壤种子库对各种防治措施的制订意义重大,它要求我们长远地、大尺度地考虑防治措施。  相似文献   

3.
福建闽清福建青冈天然林种子雨和种子库   总被引:10,自引:2,他引:8  
对福建闽清黄楮林自然保护区的福建青冈(Cyclobalanopsis chungii)天然林的种子雨和土壤种子库进行了观测和分析.结果表明,福建青冈种子雨持续2个月,其高峰期在11月下旬~12月上旬,总量为12.44个m~(-2),在种子散布过程中完好种子、虫蛀种子、败育种子、霉烂种子和萌发种子的比例差异明显,其中虫蛀种子是萌发种子的19.44倍.土壤种子库中虫蛀种子占53.79%,与种子雨相比,完好种子和萌发种子数量分别减少2.15个m~(-2)和0.20个m~(-2).土壤种子库种子存活率仅13.51%,动物捕食率达45.90%,说明动物的捕食和搬运是福建青冈种子缺失的原因之一.福建青冈天然林土壤种子库有69种植物种子,但种子数量较少,且分布不均匀,种子库中78.42%种子分布在2~5 cm土层中.福建青冈天然林中实生幼苗少与福建青冈种子本身特性及其生长环境密切相关,福建青冈种子发育成熟后因动物侵扰、虫蛀、霉烂和败育等情况发生,难以在土壤中长期保存,以致福建青冈林分天然更新严重受阻.  相似文献   

4.
格氏栲天然林林窗和林下种子散布及幼苗更新研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以格氏栲(Castanopsis kawakamii)天然林为研究对象,探讨了林窗和林下格氏栲种子雨、种子库的分布特征及幼苗更新状况。结果表明:林窗种子雨总量和完好种子密度高于林下,未成熟种子比例低于林下;林窗和林下种子雨高峰期掉落数量分别占种子雨总量的77.13%和74.5%;林窗种子库储量低于林下,种子库中以全食或捡拾种子比例最高,其中种子库储量垂直分布表现为枯落物层(约占2/3)>腐殖质层(0~5 cm)(约占1/3)>心土层(5~10 cm)(小于1%),以格氏栲种子占绝对优势;格氏栲从种子到幼苗的转化率低,林窗中格氏栲完好种子密度与幼苗密度均高于林下。林窗微生境提高了种子散布过程中格氏栲成熟种子的密度和比例,有利于促进格氏栲的幼苗更新,表明林窗在格氏栲种群恢复过程中扮演着重要角色。  相似文献   

5.
黄土高原子午岭油松林的种子雨和土壤种子库动态   总被引:8,自引:1,他引:7  
对黄土高原区子午岭不同林龄(18a、29a、40a、54a)油松(Pinus tabulaeformis carr.)人工林及天然林(约75a)的种子雨和土壤种子库进行了研究.结果表明,该区油松种子雨一般从每年9月初开始,一直到11月底结束,种子雨降落历程与林龄大小有关,种子雨发生时间和降落高峰期有所不同.不同林龄的油松种子雨强度不同,种子雨总量大小顺序为:40a人工林((489 9±8.64)粒· m-2)>29a人工林((346.8±7.45)粒· m-2)>54a人工林((327.1±8.13)粒· m-2)>天然林((146.9±5.25)粒· m-2)>18a人工林((78.1±2.72)粒· m-2).种子雨总量随林龄的增加而增加,约40a时达到高峰,种子雨活力也以40a时最高.不同林龄油松林土壤种子库存在显著差异,其中18a人工林种子库最小,40a人工林种子库最大.从种子雨降落到次年4月,5种林分土壤种子库总量下降了42.34%~53.59%,空粒种子增加了26.72%~48.69%;从4月到8月份种子腐烂率由10.28%~13 62%增加到57.25%~63.28%.动物的搬运、取食和种子腐烂死亡是种子库损耗的主要因素.土壤种子库中的油松种子主要集中在枯枝落叶层,其次为0~2cm层,2~10cm层种子最少.到8月中旬,土壤中98.26%的油松种子都已丧失活性.不同林分下油松幼苗的密度差异较大,40a人工林下幼苗最多,其余依次为29a人工林、54a人工林和天然林,18a人工林下的实生苗极少,幼苗死亡率极高.在一定龄级范围内,人工林结实能力和更新潜力随林龄增加而增加,40a时更新潜力最大.虽然有大量种子下落,但由于种子大量损耗和幼苗死亡,通过环境筛作用而最终可以成熟的个体数量十分有限.  相似文献   

6.
濒危植物南方红豆杉种子雨和土壤种子库特征   总被引:3,自引:0,他引:3  
岳红娟  仝川  朱锦懋  黄佳芳 《生态学报》2010,30(16):4389-4400
对福建南平大坪村样地和福州旗山样地濒危植物南方红豆杉种子雨动态进行了2a的观测,并在种子雨结束后不久的3月份和种子雨开始降落之前的9月份进行土壤种子库取样。南方红豆杉种子雨持续3个多月,高峰期从11月中旬开始到12月下旬结束,约40d,种子雨绝大部分降落在树冠范围内,种子雨中成熟种子占85%以上,2007年和2008年种子雨强度差异不显著(P0.05)。南方红豆杉土壤种子库主要集中在树冠范围内,在种子雨刚结束的3月份,土壤种子库主要分布在枯枝落叶层,且密度显著大于其它两层(P0.05),9月份第2次取样,枯枝落叶层种子库密度明显减少,当年种子雨仅有3%可补充到土壤种子库中,南方红豆杉种子雨中绝大多数种子受到动物取食、人为因素和环境因素的影响而损失掉无法进入土壤种子库。  相似文献   

7.
秦岭北坡不同生境栓皮栎种子雨和土壤种子库动态   总被引:3,自引:1,他引:2  
Wu M  Zhang WH  Zhou JY  Ma C  Ma LW 《应用生态学报》2011,22(11):2807-2814
为了阐明栓皮栎种子雨和种子库动态,以秦岭北坡林下、林窗、林缘3种生境栓皮栎天然林为对象,采用离地和地面收集种子的方法,连续定位观测了栓皮栎种子雨、种子库的数量、质量动态,以及幼苗发育过程.结果表明:栓皮栎种子雨从8月中旬开始,9月中旬到10月上旬达到高峰期,11月上旬结束;3种生境种子雨降落历程、发生时间和组成不同;林下种子雨强度最大,为(39.55±5.56)粒·m-2,林窗种子雨降落时间最早,持续时间最长,种子活力最高,而林缘成熟种子占其种子雨的比例最大,达58.7%.从种子雨降落结束到翌年8月,土壤种子库总储量均以林下最大,林缘最小;各生境的土壤种子库中成熟、未成熟、被啃食种子数量和种子活力均随时间变化呈递减趋势,而霉烂种子数量则相反.各生境的土壤种子库中的种子均主要集中在枯落物层,其次为0~2 cm土层,2~5 cm土层中只有极少量种子存在.3种生境中栓皮栎幼苗的密度差异显著,林窗幼苗最多,林缘次之,林下最少.说明林窗更适合栓皮栎种子的萌发和幼苗生长.在栓皮栎林的经营中,通过适当间伐、增加林窗数量,可以促进栓皮栎林的天然更新.  相似文献   

8.
内蒙古锡林郭勒克氏针茅退化草原土壤种子库特征   总被引:6,自引:3,他引:3  
仝川  冯秀  仲延凯 《生态学报》2009,29(9):4710-4719
以内蒙古锡林郭勒地区克氏针茅(Stipa krylovii)草原不同退化等级群落为对象,研究克氏针茅退化草原可萌发土壤种子库特征.结果表明,随着草原退化程度的增加,不论是土壤总种子库还是持久土壤种子库,组成和密度均明显下降, 重度和极度退化草原土壤总种子库密度下降至仅为轻度退化草原的46.8%和11.1%.代表土壤总种子库的4月份取样, 轻度、中度、重度和极度退化草原各样地0~9 cm土壤种子库密度分别为2800、1278、1311和311粒·m-2;代表持久土壤种子库的6月底取样,4个样地土壤种子库密度分别为1667、967、334和167粒·m-2.多数植物土壤种子库主要分布在0~6 cm土层,各样地种子库密度随土壤深度的增加而减少,轻度、中度、重度和极度退化草原4月份0~6 cm土层种子库分别占总种子库(0~9 cm)的98.4、96.5、95.8 和85.7%.不同退化等级草原地上植被与土壤种子库的Sorensen相似性指数介于0.24~0.48.  相似文献   

9.
外来杂草薇甘菊种群土壤种子库动态   总被引:5,自引:0,他引:5  
研究了内伶仃岛不同群落中薇甘菊土壤种子库动态。结果表明,在薇甘菊土壤种子库中,上层(0~3cm)土壤种子库密度显著高于下层(3~5cm),从地表向下随着深度的增加,活力种子逐渐减少,幼苗主要由上层土壤中的种子萌发而成。群落所处的演替阶段影响薇甘菊种群的开花结实,从而影响到薇甘菊种子的产生和种子库的储量。处于演替后期的群落中种子库储量下降。  相似文献   

10.
在斑块信息的基础上,利用GIS技术分析了坡向对四川冶勒红豆杉种群分布格局的影响.结果表明, 冶勒红豆杉种群主要分布在西北向、东北向、东向和北向斑块上,这些斑块在分布面积、平均斑块大小、平均斑块周长以及红豆杉个体的分布数量方面均占绝对优势.红豆杉种群的分布同坡向之间存在极显著的关联性,种群优先分布于北坡、东北坡、西北坡和东坡斑块,其次为西坡和西南坡斑块,最后为平地和东南坡斑块.冶勒红豆杉种群的分布格局绝大多数为聚集分布(除南向斑块外).其中, 种群聚集强度最大的是北向斑块,其CE值高达0.906,其次为东北向、西北向斑块,其CE值分别为0.797和0.563,而其余坡向斑块上的CE值均低于0.5.聚集强度CE值与斑块数量、斑块总周长以及斑块上分布的红豆杉个体数呈显著正相关(相关系数分别为0.936、0.735和0.802),而与斑块面积、平均斑块大小、平均斑块周长、平均形状指数无显著相关.  相似文献   

11.
The growing demand for native seeds in ecological restoration and rehabilitation, whether for mining, forest, or ecosystem restoration, has resulted in a major global industry in the sourcing, supply, and sale of native seeds. However, there are no international guidance documents for ensuring that native seeds have the same standards of quality assurance that are regular practice in the crop and horticultural industries. Using the International Principles and Standards for the Practice of Ecological Restoration as a foundation document, we provide for the first time a synthesis of general practices in the native seed supply chain to derive the Principles and Standards for Native Seeds in Ecological Restoration (“Standards”). These practices and the underpinning science provide the basis for developing quality measures and guidance statements that are adaptable at the local, biome, or national scale. Importantly, these Standards define what is considered native seed in ecological restoration and highlight the differences between native seeds versus seeds of improved genetics. Seed testing approaches are provided within a logical framework that outline the many different dormancy states in native seed that can confound restoration outcomes. A “pro‐forma” template for a production label is included as a practical tool that can be customized for local needs and to standardize reporting to end‐users on the level of seed quality and germinability to be expected in a native seed batch. These Standards are not intended to be mandatory; however, the guidance statements provide the foundation upon which regulatory approaches can be developed by constituencies and jurisdictions.  相似文献   

12.
含水量对种子贮藏寿命的影响   总被引:14,自引:0,他引:14  
建立以收集种子为主体的基因库乃是当今保护植物种质资源最为普遍且可靠易行的方式,在世界库存约 61 0 0 0 0 0份种质资源中,近 90 %是以种子形式保存于约 1 30 0个基因库中。低温贮藏仍是目前基因库中种子种质保存的主要方法。种子含水量和贮藏温度是影响种子在贮藏期间生活力和活力保持的关键因素。传统的经验认为控制温度比控制水分来得安全有效,因而趋向于向低温或超低温的贮藏方向发展。国际植物遗传资源研究所(IPGRI)曾推荐 5%~ 6%的含水量和 - 1 8~- 2 0℃低温作为各国长期保存种子的理想条件。目前,世界各国都把更多的…  相似文献   

13.
We argue that the need for a quality seed supply chain is a major bottleneck for the restoration of Chile's native ecosystems, thus supplementing the list of bottlenecks proposed by Bannister et al. in 2018. Specifically, there is a need for defining seed transfer zones, developing standards and capacities for properly collecting and storing seeds, reducing information gaps on seed physiology and longevity, and implementing an efficient seed supply chain with certification of seed origin and quality. Without such capacities, countries are unlikely to meet their restoration commitments. Although we focus on bottlenecks in Chile, the issues we raise are relevant to other countries and thus the global agenda for ecological restoration.  相似文献   

14.
Latitude, seed predation and seed mass   总被引:12,自引:0,他引:12  
Aim We set out to test the hypothesis that rates of pre‐ and post‐dispersal seed predation would be higher towards the tropics, across a broad range of species from around the world. We also aimed to quantify the slope and predictive power of the relationship between seed mass and latitude both within and across species. Methods Seed mass, pre‐dispersal seed predation and post‐dispersal seed removal data were compiled from the literature. Wherever possible, these data were combined with information regarding the latitude at which the data were collected. Analyses were performed using both cross‐species and phylogenetic regressions. Results Contrary to expectations, we found no significant relationship between seed predation and latitude (log10 proportion of seeds surviving predispersal seed predation vs. latitude, P = 0.63; R2 = 0.02; n = 122 species: log10 proportion of seeds remaining after postdispersal seed removal vs. latitude, P = 0.54; R2 = 0.02; n = 205 species). These relationships remained non‐significant after variation because of seed mass was accounted for. We also found a very substantial (R2 = 0.21) relationship between seed mass and latitude across 2706 species, with seed mass being significantly higher towards the tropics. Within‐species seed mass decline with latitude was significant, but only about two‐sevenths, as rapid as the cross‐species decline with latitude. Results of phylogenetic analyses were very similar to cross‐species analyses. We also demonstrated a positive relationship between seed mass and development time across ten species from dry sclerophyll woodland in Sydney (P < 0.001; R2 = 0.77; Standardized Major Axis slope = 0.14). These data lend support to the hypothesis that growing period might affect the maximum attainable seed mass in a given environment. Main conclusions There was no evidence that seed predation is higher towards the tropics. The strong relationship between seed mass and latitude shown here had been observed in previous studies, but had not previously been quantified at a global scale. There was a tenfold reduction in mean seed mass for every c. 23° moved towards the poles, despite a wide range of seed mass within each latitude.  相似文献   

15.
16.
Seed survival in soil could be strongly influenced by habitat characteristics, but little is known about the behaviour of seeds sensitive to desiccation in seed banks installed in natural or disturbed habitats. Cryptocarya aschersoniana seeds disperse at the end of the rainy season but do not germinate immediately; thus, they may form seed banks in soil. This study evaluated the behaviour of C. aschersoniana seed banks induced in the natural environment of the species and in a disturbed area. Recently harvested C. aschersoniana germination units were characterized according to their water content, germination and viability. In 2011 and 2012, seed banks were established by burying samples of seeds in the understory of a semi‐deciduous forest. In 2012, samples were also buried in a disturbed area. The seed banks were sampled at certain time intervals, and the samples were characterized as described above. Precipitation and air temperature data were collected. As a result, seeds in the seed bank established in the natural environment form a transient seed bank and showed the same behaviour in both years studied. A germination peak was observed starting 210 days after burial (coinciding with the onset of the rainy season) and reached germination percentages higher than 80% at the end of the experiment for both years. Seed mortality did not exceeded 28% in the natural environment. However, in the disturbed environment, the seeds lost their viability more rapidly, with 90% of the seeds becoming unviable 240 days after burial. Germinated seeds in the disturbed environment (maximum 21%) were not able to establish seedlings. These results underscore the importance of maintaining a natural, undisturbed forest for the conservation of this species.  相似文献   

17.

Background and Aims

Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen.

Methods

Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed.

Key Results

The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH.

Conclusions

Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.  相似文献   

18.
Effective seed storage after sourcing (harvesting or purchasing) is critical to restoration practitioners and native seed producers, as it is key to maintaining seed viability. Inadequate seed storage can lead to a waste of both natural and economic resources when seeds of poor quality are sown. When working with native species with unknown storage behavior, general assumptions can be made based on studies on related species, and standard practices may be applied with caution; however, an investigation should be conducted to understand if specific storage requirements are needed and for how long seeds can be stored before they lose significant viability. In this paper of the Special Issue Standards for Native Seeds in Ecological Restoration, we provide an overview of the key concepts in seed storage and the steps to take for effective storage of native seeds for restoration use.  相似文献   

19.
Because seed yield is the major factor determining the commercial success of grain crop cultivars, there is a large interest to obtain more understanding of the genetic factors underlying this trait. Despite many studies, mainly in the model plant Arabidopsis thaliana, have reported transgenes and mutants with effects on seed number and/or seed size, knowledge about seed yield parameters remains fragmented. This study investigated the effect of 46 genes, either in gain- and/or loss-of-function situations, with a total of 64 Arabidopsis lines being examined for seed phenotypes such as seed size, seed number per silique, number of inflorescences, number of branches on the main inflorescence and number of siliques. Sixteen of the 46 genes, examined in 14 Arabidopsis lines, were reported earlier to directly affect in seed size and/or seed number or to indirectly affect seed yield by their involvement in biomass production. Other genes involved in vegetative growth, flower or inflorescence development or cell division were hypothesized to potentially affect the final seed size and seed number. Analysis of this comprehensive data set shows that of the 14 lines previously described to be affected in seed size or seed number, only nine showed a comparable effect. Overall, this study provides the community with a useful resource for identifying genes with effects on seed yield and candidate genes underlying seed QTL. In addition, this study highlights the need for more thorough analysis of genes affecting seed yield.  相似文献   

20.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号