首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Huang L  Li B  Luo C  Xie J  Chen P  Liang S 《Proteomics》2004,4(1):235-243
Recently, it was found that in the gynogenetic haploid and diploid embryos of goldfish, which have exactly the same genome, the haploid condition results in obstruction of gene expression and abnormal development while the diploid embryos have normal gene expression and development. A diploid-dependent regulatory apparatus was proposed to regulate gene expression. To study the difference at the protein expression level of the embryos of haploid and diploid in development, we extracted the total proteins of both the gynogenetic haploid and diploid embryos of goldfish in the same eye formation stage. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. The stained gel images were analyzed with the PDQUEST software. A part of protein spots that were differentially expressed in haploid and diploid embryos were identified by matrix assisted laser desorption/ionisation-time of flight-mass spectrometry and database analysis. Sixteen protein spots that were absolutely different (only expressed in diploid embryos but not in haploid embryos or vice versa) and 16 protein spots that were up- and downregulated were identified unambiguously, which include some proteins that are correlative with eyes development, nerve development, developing regulation, cell differentiation, and signal transduction. The different significantly gene expression during embryos developing between diploid and haploid is demonstrated.  相似文献   

2.
We show here that two functionally redundant Caenorhabditis elegans genes, egl-27 and egr-1, have a fundamental role in embryonic patterning. When both are inactivated, cells in essentially all regions of the embryo fail to be properly organised. Tissue determination and differentiation are unaffected and many zygotic patterning genes are expressed normally, including HOX genes. However, hlh-8, a target of the HOX gene mab-5, is not expressed. egl-27 and egr-1 are members of a gene family that includes MTA1, a human gene with elevated expression in metastatic carcinomas. MTA1 is a component of a protein complex with histone deacetylase and nucleosome remodelling activities. We propose that EGL-27 and EGR-1 function as part of a chromatin regulatory complex required for the function of regional patterning genes.  相似文献   

3.
4.
Singh A  Chan J  Chern JJ  Choi KW 《Genetics》2005,171(1):169-183
Dorsoventral (DV) patterning is essential for growth of the Drosophila eye. Recent studies suggest that ventral is the default state of the early eye, which depends on Lobe (L) function, and that the dorsal fate is established later by the expression of the dorsal selector gene pannier (pnr). However, the mechanisms of regulatory interactions between L and dorsal genes are not well understood. For studying the mechanisms of DV patterning in the early eye disc, we performed a dominant modifier screen to identify additional genes that interact with L. The criterion of the dominant interaction was either enhancement or suppression of the L ventral eye loss phenotype. We identified 48 modifiers that correspond to 16 genes, which include fringe (fng), a gene involved in ventral eye patterning, and members of both Hedgehog (Hh) and Decapentaplegic (Dpp) signaling pathways, which promote L function in the ventral eye. Interestingly, 29% of the modifiers (6 enhancers and 9 suppressors) identified either are known to interact genetically with pnr or are members of the Wingless (Wg) pathway, which acts downstream from pnr. The detailed analysis of genetic interactions revealed that pnr and L mutually antagonize each other during second instar of larval development to restrict their functional domains in the eye. This time window coincides with the emergence of pnr expression in the eye. Our results suggest that L function is regulated by multiple signaling pathways and that the mutual antagonism between L and dorsal genes is crucial for balanced eye growth.  相似文献   

5.
6.
7.
The synthesis of gene expression data and cis-regulatory analysis permits the elucidation of genomic regulatory networks. These networks provide a direct visualization of the functional interconnections among the regulatory genes and signaling components leading to cell-specific patterns of gene activity. Complex developmental processes are thereby illuminated in ways not revealed by the conventional analysis of individual genes. In this review, we describe emerging networks in several different model systems, and compare them with the gene regulatory network that controls dorsoventral patterning of the Drosophila embryo.  相似文献   

8.
A cDNA library derived from the anterior neuroectoderm (ANE) of Xenopus late-gastrula embryos was systematically screened to isolate novel developmental regulatory genes involved in early brain development. We isolated 1,706 5 expressed sequence tags (ESTs), which were subdivided into 1,383 clusters and categorized into 19 classes based on predicted functions according to their similarities to other known genes. Of these, 757 clusters that were considered possible novel regulatory genes or unknown genes were subjected to expression pattern analysis using whole-mount in situ hybridization. Genes from 69 clusters (9%) were expressed in the ANE region. Based on their expression patterns and predicted amino acid sequences, 25 genes were selected for further analysis as novel Xenopus genes expressed broadly or region-specifically in the ANE. Eighteen genes were expressed in postulated patterning centers in the neuroectoderm, including the anterior (four genes) and lateral (nine genes) neural ridges, the midbrain-hindbrain boundary region (one gene) and the midline region of the neural plate (two genes), whereas 13 genes were expressed in the eye anlagen. Therefore, early regionalization of the neuroectoderm appears to occur mainly in those neural patterning centers and the eye anlagen. We determined the entire coding regions of p54nrb, Semaphorin 6D and a novel gene designated scribble-related protein 1 (SCRP1). Interestingly, Semaphorin 6D is expressed in the mesoderm with a dorsoventral gradient, as well as in the ectoderm at the gastrula stage, implying a new role for this protein in development other than in axon guidance.  相似文献   

9.
In order to identify potential target genes of the rough homeodomain protein, which is known to specify some aspects of the R2/R5 photoreceptor subtype in the Drosophila eye, we have carried out a search for enhancer trap lines whose expression is rough-dependent. We crossed 101 enhancer traps that are expressed in the developing eye into a rough mutant background, and have identified seven lines that have altered expression patterns. One of these putative rough target genes is rhomboid, a gene known to be required for dorsoventral patterning and development of some of the nervous system in the embryo. We have examined the role of rhomboid in eye development and find that, while mutant clones have only a subtle phenotype, ectopic expression of the gene causes the non-neuronal mystery cells to be transformed into photoreceptors. We propose that rhomboid is a part of a partially redundant network of genes that specify photoreceptor cell fate.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号