首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this work, the effect on laccase activity of adding xylidine, veratryl alcohol and copper sulphate to cultures of Coriolopsis rigida under submerged cultivation conditions have been investigated. The highest activities (approximately 6 × 105 nkat/l) were obtained when the inducers copper sulphate (2 mM) and xylidine (10 mM) were added simultaneously. In addition, operating in the optimal conditions, it was possible to maintain the sustained production of laccase (around 3 × 105 nkat/l) for successive repeated batch cultures in an expanded-bed laboratory scale bioreactor. On the other hand, in vitro phenol degradation by laccase obtained in the bioreactor was studied with/without an effective mediator 1-hydroxybenzotriazol (HBT). The presence of a radical mediator plays an important role inducing the degradation of phenol, and without mediator the polymerization of phenol was detected.  相似文献   

2.
Extracellular laccase in cultures of Grifola frondosa grown in liquid culture on a defined medium was first detectable in the early/middle stages of primary growth, and enzyme activity continued to increase even after fungal biomass production had peaked. Laccase production was significantly increased by supplementing cultures with 100–500 μM Cu over the basal level (1.6 μM Cu) and peak levels observed at 300 μM Cu were 7-fold higher than in unsupplemented controls. Decreased laccase activity similar to levels detected in unsupplemented controls, as well as an adverse effect on fungal growth, occurred with further supplementation up to and including 0.9 mM Cu, but higher enzyme titres (2- to 16-fold compared with controls) were induced in cultures supplemented with 1–2 mM Cu2+. SDS-PAGE combined with activity staining revealed the presence of a single protein band (M r 70 kDa) exhibiting laccase activity in control culture fluids, whereas an additional distinct laccase protein band (M r 45 kDa) was observed in cultures supplemented with 1–2 mM Cu. Increased levels of extracellular laccase activity, and both laccase isozymes, were also detected in cultures of G. frondosa supplemented with ferulic, vanillic, veratric and 4-hydroxybenzoic acids, and 4-hydroxybenzaldehyde. Using 2,2′-azino-bis(ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate, the optimal temperature and pH values for laccase activity were 65°C and pH 2.2, respectively, and the enzyme was relatively heat stable. In solid-state cultures of G. frondosa grown under conditions adopted for industrial-scale mushroom production, extracellular laccase levels increased during the substrate colonization phase, peaked when the substrate was fully colonized, and then decreased sharply during fruit body development.  相似文献   

3.
In vitro transgenic hairy root cultures provide a rapid system for physiological, biochemical studies and screening of plants for their phytoremediation potential. The hairy root cultures of Brassica juncea L. showed 92% decolorization of Methyl orange within 4 days. Out of the different redox mediators that were used to achieve enhanced decolorization, 2, 2′-Azinobis, 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was found to be the most efficient. Laccase activity of 4.5 U mg−1 of protein was observed in hairy root cultures of Brassica juncea L., after the decolorization of Methyl orange. Intracellular laccase produced by B. juncea root cultures grown in MS basal medium was purified up to 2.0 fold with 6.62 U mg−1 specific activity using anion-exchange chromatography. Molecular weight of the purified laccase was estimated to be 148 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme efficiently oxidized ABTS which was also required for oxidation of the other tested substrates. The pH and temperature optimum for laccase activity were 4.0 and 40°C, respectively. The purified enzyme was stable up to 50°C and was stable in the pH range of 4.0–6.0. Laccase activity was strongly inhibited by sodium azide, EDTA, dithiothreitol and l-cysteine. The purified enzyme decolorized various textile dyes in the presence of ABTS as an efficient redox mediator. These findings contribute to a better understanding of the enzymatic process involved in phytoremediation of textile dyes by using hairy roots.  相似文献   

4.
Six different extracellular laccase isoforms were identified in submerged cultures of the commercially important edible mushroom, Coprinus comatus. Although laccase activity (~55 IU/L) was readily detectable in unsupplemented control cultures containing 1.6 μM Cu2+ after 22-day incubation, mean enzyme levels (~150–185 IU/L) were 2.7–3.4-fold higher in cultures supplemented with 0.5–3.0 mM Cu2+. Laccase production was also stimulated by Mn supplementation over the range 0.05–0.8 mM Mn2+, and the peak value of ~225 IU/L recorded after 22 days in cultures containing 0.8 mM added Mn2+ was 4.5-fold higher compared with unsupplemented controls. Of 12 aromatic compounds tested for their effect on laccase isozyme production by C. comatus, highest laccase levels (~188 IU/L), equivalent to a 4.4-fold increase compared with unsupplemented controls (~43 IU/L), were recorded after 22 days in cultures supplemented with 3.0 mM caffeic acid. Other aromatic compounds tested all stimulated laccase production, with peak enzyme levels 1.3–3.3-fold higher compared with unsupplemented controls. Extracellular laccase levels in cultures supplemented with optimal concentrations of Mn2+ and caffeic acid together were 38% and 15% lower, respectively, compared with cultures containing the separate supplements. Lac1 was the most abundant laccase isoform produced under all the conditions tested, but marked differences were observed in the production patterns of Lac2–Lac6.  相似文献   

5.
Summary Extracellular laccase in cultures of Grifola frondosa grown in liquid culture on a defined medium was first detectable in the early/middle stages of primary growth, and enzyme activity continued to increase even after fungal biomass production had peaked. Laccase production was significantly increased by supplementing cultures with 100–500 (M Cu over the basal level (1.6 mM Cu) and peak levels observed at 300 mM Cu were ∼ ∼7-fold higher than in unsupplemented controls. Decreased laccase activity similar to levels detected in unsupplemented controls, as well as an adverse effect on fungal growth, occurred with further supplementation up to and including 0.9 mM Cu, but higher enzyme titres (2- to 16-fold compared with controls) were induced in cultures supplemented with 1–2 mM Cu2+. SDS-PAGE combined with activity staining revealed the presence of a single protein band (M r ∼ ∼70 kDa) exhibiting laccase activity in control culture fluids, whereas an additional distinct second laccase protein band (M r␣∼ ∼45 kDa) was observed in cultures supplemented with 1–2 mM Cu. Increased levels of extracellular laccase activity, and both laccase isozymes, were also detected in cultures of G. frondosa supplemented with ferulic, vanillic, veratric and 4-hydroxybenzoic acids, and 4-hydroxybenzaldehyde. The optimal temperature and pH values for laccase activity were 65 °C and pH 2.2 (using 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) {ABTS} as substrate), respectively, and the enzyme was relatively heat stable. In solid-state cultures of G. frondosa grown under conditions adopted for industrial-scale mushroom production, extracellular laccase levels increased during the substrate colonization phase, peaked when the substrate was fully colonized, and then decreased sharply during fruit body development.  相似文献   

6.
In the present paper the effect of adding veratryl alcohol and copper sulphate on laccase activity production by Trametes versicolor immobilized into alginate beads has been investigated. Employing copper sulphate as laccase inducer or supplementing the culture medium with veratryl alcohol, led to maximum values of laccase activity. However, the highest laccase activity (around 4,000 U l−1) was obtained in cultures simultaneously supplemented with copper sulphate (3 mM) and veratryl alcohol (20 mM). These values implied a considerable enhancement in relation to␣control cultures without any inducer (around 200 U l−1). The production of laccase by immobilized T. versicolor in a 2-l airlift bioreactor with the optimized inducer has been evaluated. Laccase activities around 1,500 U l−1 were attained. The bioreactor operated for 44 days without operational problems and the bioparticles (fungus grows in alginate beads) maintained their shape throughout the fermentation. Moreover, the extracellular liquid obtained was studied in terms of pH and temperature activity and stability. On the other hand, anthracene was added in two-repeated batches in order to determine the efficiency of this process to degrade pollutants. Near complete degradation was reached in both batches. Moreover, in vitro degradation of several polycyclic aromatic hydrocarbons by crude laccase was also performed.  相似文献   

7.
Xylanase production by the Antarctic psychrophilic yeast Cryptococcus adeliae was increased 4.3 fold by optimizing the culture medium composition using statistical designs. The optimized medium containing 24.2 g l−1 xylan and 10.2 g l−1 yeast extract and having an initial pH of 7.5 yielded xylanase activity at 400 nkat (nanokatal) ml−1 after 168-h shake culture at 4°C. In addition, very little endoglucanase, β-mannanase, β-xylosidase, β-glucosidase, α-l-arabinofuranosidase, and no filter paper cellulase activities were detected. Among 12 carbon sources tested, maximum xylanase activity was induced by xylan, followed by lignocelluloses such as steamed wheat straw and alkali-treated bagasse. The level of enzyme activity produced on other carbon sources appeared to be constitutive. Among the complex organic nitrogen sources tested, the xylanase activity was most enhanced by yeast extract, followed by soymeal, Pharmamedia (cotton seed protein), and Alburex (potato protein). A batch culture at 10°C in a 5-l fermenter (3.5-1 working volume) using the optimized medium gave 385 nkat at 111 h of cultivation. The crude xylanase showed optimal activity at pH 5.0–5.5 and good stability at pH 4–9 (21 h at 4°C). Although the enzyme was maximally active at 45°–50°C, it appeared very thermolabile, showing a half-life of 78 min at 35°C. At 40°–50°C, it lost 71%–95% activity within 5 min. This is the first report on the production as well as on the properties of thermolabile xylanase produced by an Antarctic yeast. Received: December 10, 1999 / Accepted: March 23, 2000  相似文献   

8.
Shake-flask cultivation of T. lanuginosus strain SSBP on coarse corn cobs yielded β-xylanase levels of 56,500 nkat/ml at 50 °C, whereas other hemicellulases (β-xylosidase, β-glucosidase, and α-l-arabinofuranosidase) were produced at levels less than 7 nkat/ml. Cultivation on d-xylose yielded much lower levels of xylanase (350 nkat/ml), although other hemicellulase levels were similar to those produced on corn cobs. The influence of agitation rate and dissolved oxygen tension (DOT) on hemicellulase production was studied further in a bioreactor. On xylose, xylanase activities of 4,330 nkat/ml and 4,900 nkat/ml were obtained at stirrer speeds up to 1,400 rpm to control DOT. At a constant stirrer speed of 400 rpm, xylanase activities of 10,930 nkat/ml and 15,630 nkat/ml were obtained when cultivated on xylose and beechwood xylan respectively, despite DOT levels below 5% for the duration of fermentation. The results indicate that there is an interaction between agitation rate and DOT, impacting on xylanase and accessory enzyme production. Higher agitation rates favoured the production of xylosidase, arabinofuranosidase and glucosidase by T. lanuginosus strain SSBP, whereas the lower agitation rates favoured xylanase production. Rheological difficulties precluded cultivation on corn cobs in the bioreactor. Volumetric xylanase productivities of 1,060,000 nkat/l · h and 589,000 nkat/l · h obtained on beechwood xylan and xylose indicate that T. lanuginosus strain SSBP is a hyper-xylanase producer with considerable industrial potential. Received: 5 May 1999 / Received revision: 31 May 2000 / Accepted: 3 June 2000  相似文献   

9.
Increased production, secretion, and activity of β-glucosidase in the filamentous fungus Termitomyces clypeatus was achieved in presence of the glycosylation inhibitor 2-deoxy-d-glucose (0.05%, w/v) during submerged fermentation. Enzyme activity increased to 163 U/mL by adding mannose (2 mg/mL) to the medium. Such a high enzyme activity has not been achieved without mutation or genetic manipulation. The Km and Vmax of the enzyme in culture medium were determined to be 0.092 mM and 35.54 U/mg, respectively, with p-nitrophenyl β-d-glucopyranoside as substrate, confirming its high catalytic activity. The enzyme displayed optimum activity at pH 5.4 and 45°C. The enzyme was fairly stable between acidic to alkaline pH and retained about 75 ∼ 65% residual activities between pH 4 and 10.6 and demonstrated full activity at 45°C for 3 days. The enzyme was also stable in the presence of Zn2+ and Mg2+ and 80% of the residual activity was observed in the presence of Mn2+, Ca2+, K+, Cu2+, EDTA, and sodium azide. Around 70% of the activity was retained in the presence of 2 M guanidium HCl and 3 M urea, whereas the activity was 5 and 2 times higher in the presence of 4 mM beta-mercaptoethanol and 50 mM DTT, respectively. The enzyme obtained from the culture filtrate showed potential cellulose saccharifying ability which increased further when supplemented with commercial cellulase. Thus, this enzyme could be used without any additional downstream processing for commercial cellulase preparation and production of bioethanol or for other biotechnological applications.  相似文献   

10.
Production of laccase using a submerged culture of Trametes versicolor sdu-4 was optimized using a central composite design of the Response Surface Methodology. Optimized conditions gave a laccase yield of 4,213 U/L which was approximately three times of that in basal medium. The laccase was purified to homogeneity using a three-step process. The overall yield of the purification was 58%, with a purification fold of 11.4 and a specific activity of 1320.7 U/mg protein. The molecular mass of the laccase was 60 kDa. The optimum pH values of the enzyme were 2.2, 3.7, and 7 for the oxidations of ABTS, DMP, and syringaldazine, respectively. The enzyme had adaptability to a broad pH range and high temperature and wsa stable at pH 3.0 ∼ 10.0. The half-life of this laccase at 70°C was 2.2 h. Methyl red, 2-bromophenol, and 4-bromophenol were oxidized by the purified laccase in the absence of mediators. Purified laccase was effective in the decolorization of several dyes and was not inhibited by Cu2+, Mn2+, Zn2+, Na+, K+, Mg2+, Ba2+, and Ca2+ at 5 mM. These excellent characteristics made it a highly attractive candidate for industrial use.  相似文献   

11.
ACurvularia sp. isolated from soil was found to contain laccase activity toward guaiacol as substrate. The organism produced an extracellular laccase in a medium containing yeast extract, peptone and dextrose. Initial medium pH 4.0 and cultivation temperature 30°C were found to be most suitable for maximum enzyme production. The optimum pH and temperature for laccase activity were found to be 5.2 and 50°C, respectively. Under optimum conditions, the enzyme had aK m (guaiacol) of 0.75 mmol/L and aV of 1.50 CU min−1 ml−1. Some divalent metal ions inhibited laccase activity at very low concentrations.  相似文献   

12.
Regulation of the formation of protease inBacillus megaterium   总被引:4,自引:0,他引:4  
Protease is synthesized by the cultures growing in a glucose-containing mineral medium. However, it is formed even during incubation of the washed cells in a nitrogen free medium. The enzyme synthesis is decreased substantially by the addition of the individual amino acids or their mixture. Threonine, isoleucine, leucine and valine are the most inhibitory. Arginine, cysteine, glycine, lysine and tryptophan in concentrations of 103 m do not inhibit the production of protease. The growth of the culture is also somewhat inhibited by threonine and isoleucine, the repression of protease being, however, much higher. Concentrations of 103 m inhibit its synthesis by 80–90%. However, the enzyme activity is not influenced. The inhibition is caused byl,-isomers. Repression of the enzyme synthesis after the addition of threonine into the medium is much greater in a growing culture than in a culture starving in a nitrogen-free medium. However the level of free threonine in the pool is roughly the same in both growing and non-growing cultures. A mixture of 13 amino acids, which themselves are little inhibitory, suppresses the synthesis of protease much more than threonine or isoleucine. The inhibitory effect of the individual amino acids on the enzyme formation is apparently additive.  相似文献   

13.
The effect of polycyclic aromatic hydrocarbons (PAHs) on the time course of laccase production by the fungus Pleurotus ostreatus D1 under conditions of submerged cultivation on Kirk’s medium has been studied. It has been shown that phenanthrene, fluoranthene, pyrene, and chrysene actively induce this enzyme, whereas fluorene and anthracene had a smaller effect. Addition of Mn2+ ions to cultivation medium elevates the laccase activity twofold and more in the presence of all the studied PAHs. Electrophoresis under nondenaturing conditions demonstrates induction of additional laccase forms by xenobiotics. Ligninolytic peroxidase activities are undetectable under the conditions used.  相似文献   

14.
l-tryptophan decarboxylase (TDC, EC 4.1.1.28) catalyses the formation of tryptamine from tryptophan, and therefore it plays a role in terpenoid indole alkaloids biosynthesis. In this study, TDC activity and tryptamine accumulation were monitored in callus cultures of important medicinal plant Vinca minor L. Callus cultures, established from leaf tissues, were incubated on Murashige and Skoog (MS) medium supplemented with 4.4 μM kinetin and different concentrations (0.44, 1.1, 2.2, 4.4 and 6.6 μM) of naphthaleneacetic acid (NAA), and grown either in the dark or under 16 h photoperiod. When the basal enzyme activity of TDC was determined in these cultures, it was 0.5–0.7 nmol tryptamine mg−1 prot. min−1. Moreover, this activity remained linear over time and over protein concentrations, and with optimum pH levels between 6.5 and 7.5, and an optimum temperature of 35°C. The Michaelis–Menten constant (Km) for l-tryptophan was 1.3 mM. TDC cofactor, pyridoxal-5′-phosphate (1 mM), increased the enzyme activity. During later stages of callus culture growth cycle, an increase in TDC activity was observed, and this activity depended on culture conditions and age of callus cultures. In addition, TDC activity and tryptamine accumulation in callus cultures were strongly enhanced by light treatment.  相似文献   

15.
An alternative system for producing laccase on a bioreactor scale by the white‐rot fungus Trametes hirsuta is proposed. The experiments were performed in an immersion bioreactor (employing cuttings of stainless steel sponges as a support) and the culture medium was supplemented with copper sulfate (1 mM). Operating under these conditions, it was possible to obtain a maximum laccase activity of nearly 5,000 U/L within 9 days. In addition, the ability of the crude laccase produced to decolorize two synthetic acid dyes utilized in the leather industry (Luganil Green and Sella Solid Red) was investigated. The effect of the pH and the enzyme activity on decolorization was analyzed. It was found that a pH of 4.0 and a laccase activity of 300 U/L were optimal for Luganil dye decolorization (16.2 % in 2 hours). Sella Solid Red showed its highest decolorization (around 40 % in 2 hours) when used at pH 5.0 and at a laccase activity of 1,000 U/L.  相似文献   

16.
The extracellular activity ofAspergillus niger phytase at the end of the growth phase was 132 nkat/mL in a laboratory bioreactor. The purified enzyme has molar mass approximately 100 kDa, pH optimum at 5.0, temperature optimum at 55°C and high pH and temperature stability. TheK m for dodecasodium phytate, calcium phytate and 4-nitrophenyl phosphate are 0.44, 0.45 and 1.38 mmol/L, respectively. The enzyme is noncompetively inhibited by inorganic monophosphate (K i=2.85 mmol/L) and by Cu2+, Zn2+, Hg2+, Sn2+, Cd2+ ions and strongly by F ones; it is activated by Ca2+, Mg2+ and Mn2+ ions. The substrate specificity of phytase is broad with the highest affinity to calcium phytate.  相似文献   

17.
The white rot fungus Pycnoporus sanguineus produced high amount of laccase in the basal liquid medium without induction. Laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 61.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme oxidized typical substrates of laccases including 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate), 2,6-dimethoxyphenol, and syringaldazine. The optimum pH and temperature for the purified laccase were 3.0 and 65°C, respectively. The enzyme was stable up to 40°C, and high laccase activity was maintained at pH 2.0–5.0. Sodium azide, l-cysteine, and dithiothreitol strongly inhibited the laccase activity. The purified enzyme efficiently decolorized Remazol Brilliant Blue R in the absence of added redox mediators. The high production of P. sanguineus laccase as well as its decolorization ability demonstrated its potential applications in dye decolorization.  相似文献   

18.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

19.
Laminaribiose phosphorylase (EC 2.4.1.31) catalyzes a reversible phosphorolysis reaction in which laminaribiose, a very high value sugar is produced. This enzyme is not being produced commercially therefore, to realize the most effective method for producing laminaribiose phosphorylase and obtaining as much activity units as possible per liter of culture, different cultivation methods of Euglena gracilis were compared. Heterotrophic and mixotrophic cultivations of Euglena gracilis in two different pHs, in flask and bioreactor were performed. The reverse phosphorolysis activity of laminaribiose phosphorylase produced under different cultivation methods was measured. The heterotrophic approach showed to be the more effective cultivation method as 47.6 IU/L was obtained compared to 27 IU/L in the mixotrophic one. The heterotrophic cultivation then was further investigated under two different pH values of the culture media. The culture at pH 6.8 resulted in 7.94 IU/L/day whereas only 4.06 was obtained for the culture at pH 4. Cultivation in a bioreactor resulted in a distinctive amount of 191.5 IU/L and an activity yield of 9.7 IU/g glucose compared to 5.4 in flask cultivation. Heterotrophic cultivation of Euglena gracilis in a bioreactor containing a culture media at pH 6.8 and controlled operation conditions showed enhanced laminaribiose phosphorylase activity production per liter and day of cultivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号