首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
Summary Artemisinin (AN), a potent antimalarial drug that has been used for centuries as a folk remedy in China, is an effective treatment against quinine-resistant strains of Plasmodium. It can be produced through the in vitro culture of genetically transformed (hairy) roots. The effect of gibberellic acid (GA3) on the growth and secondary metabolite production of hairy roots of Artemisia annua was investigated. Six different concentrations of GA3 were tested in shaker flasks to determine the optimum concentration. GA3 levels of 0.01–0.001 mg/l (28.9–2.89 μM) provided the most significant increase in biomass, and 0.01 mg/l (28.9 μM) produced the highest amount of AN. Investigation of growth kinetics showed that the use of GA3 at 0.01 mg/l (28.9 μM) increased the growth rate of hairy roots of A. annua by 24.9%. Thus, the cultures treated with GA3 reached stationary phase faster than control cultures.  相似文献   

7.
8.
9.
10.
Artemisia annua L. is the only natural resource that produces artemisinin (Qinghaosu), an endoperoxide sesquiterpene lactone used in the artemisinin-combination therapy of malaria. The cross-hybridization properties of A. annua do not favor studying artemisinin biosynthesis. To overcome this problem, in this study, we report on selection of self-pollinated A. annua plants and characterize their development and artemisinin biosynthesis. Self-pollinated F2 plants selected were grown under optimized growth conditions, consisting of long day (16 h of light) and short day (9 h of light) exposures in a phytotron. The life cycles of these plants were approximately 3 months long, and final heights of 30–35 cm were achieved. The leaves on the main stems exhibited obvious morphological changes, from indented single leaves to odd, pinnately compound leaves. Leaves and flowers formed glandular and T-shaped trichomes on their surfaces. The glandular trichome densities increased from the bottom to the top leaves. High performance liquid chromatography–mass spectrometry-based metabolic profiling analyses showed that leaves, flowers, and young seedlings of F2 plants produced artemisinin. In leaves, the levels of artemisinin increased from the bottom to the top of the plants, showing a positive correlation to the density increase of glandular trichomes. RT-PCR analysis showed that progeny of self-pollinated plants expressed the amorpha-4, 11-diene synthase (ADS) and cytochrome P450 monooxygenase 71 AV1 (CYP71AV1) genes, which are involved in artemisinin biosynthesis in leaves and flowers. The use of self-pollinated A. annua plants will be a valuable approach to the study of artemisinin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号