首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

2.
Quantifying changes in stocks of C, N, P, and S in agricultural soils is important not only for managing these soils sustainably as required to feed a growing human population, but for C and N, they are also important for understanding fluxes of greenhouse gases from the soil environment. In a global meta‐analysis, 102 studies were examined to investigate changes in soil stocks of organic C, total N, total P, and total S associated with long‐term land‐use changes. Conversion of native vegetation to cropping resulted in substantial losses of C (?1.6 kg m?2, ?43%), N (?0.15 kg m?2, ?42%), P (?0.029 kg m?2, ?27%), and S (?0.015 kg m?2, ?33%). The subsequent conversion of conventional cropping systems to no‐till, organic agriculture, or organic amendment systems subsequently increased stocks, but the magnitude of this increase (average of +0.47 kg m?2 for C and +0.051 kg m?2 for N) was small relative to the initial decrease. We also examined the conversion of native vegetation to pasture, with changes in C (?11%), N (+4.1%), and P (+25%) generally being modest relative to changes caused by conversion to cropping. The C:N ratio remained relatively constant irrespective of changes in land use, whilst in contrast, the C:S ratio decreased by 21% in soils converted to cropping – this suggesting that biochemical mineralization is of importance for S. The data presented here will assist in the assessment of different agricultural production systems on soil stocks of C, N, P, and S – this information assisting not only in quantifying the effects of existing agricultural production on these stocks, but also allowing for informed decision‐making regarding the potential effects of future land‐use changes.  相似文献   

3.
Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus ( Miscanthus × giganteus ), short rotation coppice (SRC) poplar ( Populus trichocarpa Torr. & Gray × P. trichocarpa , var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.  相似文献   

4.
The impact of deforestation on soil organic carbon (SOC) stocks is important in the context of climate change and agricultural soil use. Trends of SOC stock changes after agroecosystem establishment vary according to the spatial scale considered, and factors explaining these trends may differ sometimes according to meta‐analyses. We have reviewed the knowledge about changes in SOC stocks in Amazonia after the establishment of pasture or cropland, sought relationships between observed changes and soil, climatic variables and management practices, and synthesized the δ13C measured in pastures. Our dataset consisted of 21 studies mostly synchronic, across 52 sites (Brazil, Colombia, French Guiana, Suriname), totalling 70 forest–agroecosystem comparisons. We found that pastures (n = 52, mean age = 17.6 years) had slightly higher SOC stocks than forest (+6.8 ± 3.1 %), whereas croplands (n = 18, mean age = 8.7 years) had lower SOC stocks than forest (?8.5 ± 2.9 %). Annual precipitation and SOC stocks under forest had no effect on the SOC changes in the agroecosystems. For croplands, we found a lower SOC loss than other meta‐analyses, but the short time period after deforestation here could have reduced this loss. There was no clear effect of tillage on the SOC response. Management of pastures, whether they were degraded/nominal/improved, had no significant effect on SOC response. δ13C measurements on 16 pasture chronosequences showed that decay of forest‐derived SOC was variable, whereas pasture‐derived SOC was less so and was characterized by an accumulation plateau of 20 Mg SOC ha?1 after 20 years. The large uncertainties in SOC response observed could be derived from the chronosequence approach, sensitive to natural soil variability and to human management practices. This study emphasizes the need for diachronic and long‐term studies, associated with better knowledge of agroecosystem management.  相似文献   

5.
This study shows that Vochysia guatemalensis tree plantations were associated with enhanced soil biotic and abiotic characteristics in previously cleared forests in the northern zone of Costa Rica, suggesting the possible use of this practice as a restoration strategy for local land owners. Soil samples from a primary forest, secondary forest, and a 13‐year‐old plantation of V. guatemalensis had greater relative abundances of DNA sequences of microbial genera critical for carbon‐use (C‐use) efficiency (i.e. the saprobe, complex C and wood rot/lignin decomposer fungi, and bacterial lignin and other complex C degraders), and greater levels of total organic carbon, C‐biomass, and microbial quotients as indicators of enhanced C‐use efficiency, than found in soils of adjacent 5‐year‐old V. guatemalensis plantations and abandoned non‐productive pasture/grasslands (GRs). The major research conclusions were that (1) conversion of forested land into abandoned pasture/GRs decreased the C‐use efficiency in the soils and the microbial groups associated with C‐use efficiency; (2) soils in plantations of V. guatemalensis were associated with increased abundances of the DNA of these same microbial groups and enhanced C‐use efficiency; (3) DNA‐based taxonomic analysis of microbes and analysis of the microbial quotient values can be used to monitor soil ecosystems for assessment of the efficacy of restoration activities. Thus, planting V. guatemalensis on damaged lands in the Maquenque National Wildlife Refuge should be encouraged to provide a sustainable forestry crop that can be harvested rotationally, while improving soil ecosystem health and reducing the pressure to harvest other forest sites.  相似文献   

6.
The replacement of native vegetation by pastures or tree plantations is increasing worldwide. Contradictory effects of these land use transitions on the direction of changes in soil organic carbon (SOC) stocks, quality, and vertical distribution have been reported, which could be explained by the characteristics of the new or prior vegetation, time since vegetation replacement, and environmental conditions. We used a series of paired‐field experiments and a literature synthesis to evaluate how these factors affect SOC contents in transitions between tree‐ and grass‐dominated (grazed) ecosystems in South America. Both our field and literature approaches showed that SOC changes (0–20 cm of depth) were independent of the initial native vegetation (forest, grassland, or savanna) but strongly dependent on the characteristics of the new vegetation (tree plantations or pastures), its age, and precipitation. Pasture establishment increased SOC contents across all our precipitation gradient and C gains were greater as pastures aged. In contrast, tree plantations increased SOC stocks in arid sites but decreased them in humid ones. However, SOC losses in humid sites were counterbalanced by the effect of plantation age, as plantations increased their SOC stocks as plantations aged. A multiple regression model including age and precipitation explained more than 50% (p < 0.01) of SOC changes observed after sowing pastures or planting trees. The only clear shift observed in the vertical distribution of SOC occurred when pastures replaced native forests, with SOC gains in the surface soil but losses at greater depths. The changes in SOC stocks occurred mainly in the silt+clay soil size fraction (MAOM), while SOC stocks in labile (POM) fraction remained relatively constant. Our results can be considered in designing strategies to increase SOC storage and soil fertility and highlight the importance of precipitation, soil depth, and age in determining SOC changes across a range of environments and land‐use transitions.  相似文献   

7.
As oil palm has been considered one of the most favorable oilseeds for biodiesel production in Brazil, it is important to understand how cultivation of this perennial crop will affect the dynamics of soil organic carbon (SOC) in the long term. The aim of this study was to evaluate the changes in soil C stocks after the conversion of forest and pasture into oil palm production in the Amazon Region. Soil samples were collected in March 2008 and September 2009 in five areas: native forest (NARF), pasture cultivated for 55 years (PAST), and oil palm cultivated for 4 (OP‐4), 8 (OP‐8) and 25 years (OP‐25), respectively. Soils were sampled in March 2008 to evaluate the spatial variability of SOC and nitrogen (N) contents in relation to the spacing between trees. In September 2009, soils were sampled to evaluate the soil C stocks in the avenues (inter rows) and frond piles, and to compare the total C stocks with natural forest and pasture system. Soil C contents were 22–38% higher in the area nearest the oil palm base (0.6 m) than the average across the inter row (0–4.5 m from the tree), indicating that the increment in soil organic matter (SOM) must have been largely derived from root material. The soil C stocks under palm frond piles were 9–26% higher than in the inter rows, due to inputs of SOM by pruned palm fronds. The soil carbon stocks in oil palm areas, after adjustments for differences in bulk density and clay content across treatments, were 35–46% lower than pasture soil C stocks, but were 0–18% higher than the native forest soil C content. The results found here may be used to improve the life cycle assessment of biodiesel derived from palm oil.  相似文献   

8.
Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m?2 and 245 g N m?2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above‐ and below‐ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long‐term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures <20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long‐term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest‐derived C and its replacement by pasture‐derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.  相似文献   

9.
Small‐scale Jatropha cultivation and biodiesel production have the potential of contributing to local development, energy security, and greenhouse gas (GHG) mitigation. In recent years however, the GHG mitigation potential of biofuel crops is heavily disputed due to the occurrence of a carbon debt, caused by CO2 emissions from biomass and soil after land‐use change (LUC). Most published carbon footprint studies of Jatropha report modeled results based on a very limited database. In particular, little empirical data exist on the effects of Jatropha on biomass and soil C stocks. In this study, we used field data to quantify these C pools in three land uses in Mali, that is, Jatropha plantations, annual cropland, and fallow land, to estimate both the Jatropha C debt and its C sequestration potential. Four‐year‐old Jatropha plantations hold on average 2.3 Mg C ha?1 in their above‐ and belowground woody biomass, which is considerably lower compared to results from other regions. This can be explained by the adverse growing conditions and poor local management. No significant soil organic carbon (SOC) sequestration could be demonstrated after 4 years of cultivation. While the conversion of cropland to Jatropha does not entail significant C losses, the replacement of fallow land results in an average C debt of 34.7 Mg C ha?1, mainly caused by biomass removal (73%). Retaining native savannah woodland trees on the field during LUC and improved crop management focusing on SOC conservation can play an important role in reducing Jatropha's C debt. Although planting Jatropha on degraded, carbon‐poor cropland results in a limited C debt, the low biomass production, and seed yield attained on these lands reduce Jatropha's potential to sequester C and replace fossil fuels. Therefore, future research should mainly focus on increasing Jatropha's crop productivity in these degraded lands.  相似文献   

10.
Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha−1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha−1 to an increase of 8 Mg C ha−1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号