首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We collected 20 checkered keelback snakes (Xenochrophis piscator) to study embryonic growth and mobilization of energy and material during incubation. Females laid eggs between late May and late June. The eggs were incubated at 27 degrees C (+/-0.3). One egg from each clutch was dissected at five-day intervals starting at oviposition. The mean incubation length at 27 degrees C was 48.9 days. We identified three phases of embryonic growth or yolk depletion in X. piscator. Phase 1, between oviposition and Day 20, was one of minimal transfer of energy and material from yolk to embryo. Phase 2, between Day 20 and Day 39-40, was characterized by increasingly rapid embryonic growth or yolk depletion. Phase 3, between Day 39-40 and hatching, was characterized by reduced embryonic growth or yolk depletion. Approximately 71% of dry mass, 53% of non-polar lipids and 66% of energy were transferred from the egg contents to the hatchling during incubation. Our data confirm that oviposition is not timed to coincide with the onset of rapid embryonic growth in oviparous squamate reptiles. The greater conversion efficiencies of energy and material from egg to hatchling in snakes can be attributed to their lower energetic costs of embryonic development and greater residual yolk sizes.  相似文献   

2.
In four eggs and four chicks of the North Island brown kiwi (Apteryx mantelli) we measured pre- and postnatal oxygen consumption rate (VO(2)) daily from day (d)-75 (prior to hatching) until d+25 (after hatching). The increase of embryonic VO(2) reaches a plateau phase between d-22 and d-5 (0.113 ml O(2)/g/h=59.6% of allometrically expected value of a typical 416-g egg). Mean total O(2) uptake per egg (43.01 l O(2)) corresponds to an energy turnover rate of 2.04 kJ/g during embryonic development. This is nearly identical to the expected value for all birds (2.00+/-0.8 kJ/g). Hence, the kiwi neither 'gained nor lost energy' (Calder, 1979.Biosci. 8, 461-467) by its extreme prolongation of incubation time; it is as efficient as other avian embryos. The kiwi embryo expends only approximately 17% (847 kJ) of the energy originally stored in the egg (4942 kJ). Forty-eight percent of the egg's initial yolk mass can be found as spare yolk in the hatchling and can serve as the chick's sole source of energy and substrate for tissue production for up to at least 17 days after hatching.  相似文献   

3.
Studies to date indicate that thyroid hormones are present inthe eggs of chickens and quail and that those hormones are primarilyin the yolk. Quail hens deposit thyroid hormones into eggs inproportion to their own thyroid status, but appear to show someregulation of this process. Indirect studies suggest that thyroidhormones are transferred into oocytes bound to lipoproteinsand transthyretin, both of which are taken up by receptor-mediatedprocesses. Thyroid hormones bound to yolk lipoproteins may enterembryos with yolk that is taken up by non-specific endocytosisor they may be transported into the embryo by specific carriers.To date most of these ideas about thyroid hormone transportinto egg yolk and from egg yolk into embryos have not been investigateddirectly. In quail, very high T4 content of eggs is associatedwith accelerated differentiation and growth of embryonic pelviccartilage, a thyroid hormone-responsive tissue. We evaluatethese effects on embryonic tissues and the changes in yolk hormonecontent during incubation in relation to the timing of thyroiddevelopment and studies of the capability for tissue responsesto thyroid hormones during early embryonic life  相似文献   

4.
Effect of turning of the egg during incubation on development of the area vasculosa of the chick embryo was investigated. The size of the area vasculosa was determined by two methods: direct measurement with calipers and measurement of a template cut from the eggshell by use of an automatic surface area recorder. The effects of turning and additionally the effects of lowered temperature (36°C) on both growth of the area vasculosa by day 7 and embryo growth by day 14 of incubation were investigated. The effects of turning during a critical period for turning, from 3 to 7 days of incubation, were also recorded. Generally, failure to turn eggs retarded growth of the area vasculosa. Turning during the critical period stimulated the extent of growth of the area vasculosa by day 7 of incubation and of subsequent embryonic growth by day 14. Incubation at low temperature resulted both in reduced expansion of the area vasculosa and retarded embryonic growth in a pattern similar to that observed for unturned eggs. It is suggested that turning stimulates development of blood vessels in the area vasculosa via localized increases in blood pressure. The effect of a reduced area vasculosa is considered to retard embryonic development through restricted nutrient uptake from the yolk. The prevailing hypothesis that turning prevents deleterious membrane adhesions is questioned in light of these observations. It is suggested that the physiological basis for the need for turning lies in maximizing the growth rate of the area vasculosa to maximize yolk use and embryonic growth rate.  相似文献   

5.
The reproductive biology and embryonic development of Typhlopidae have rarely been explored. This family of snakes includes mostly oviparous species with uterine egg retention, but the morphology and development of embryos remain unknown. This work aimed to describe the embryonic development of Amerotyphlops brongersmianus from the northeast of Argentina. For this purpose, embryos from intrauterine eggs of gravid females and eight post-ovipositional eggs incubated in the laboratory were analyzed. Embryonic stages, corresponding to the early, mid and advanced development, and a hatchling were described. The main organs and systems form during the period of intrauterine embryonic retention. Comparing to other snakes, differences in the development of cranial structures such as encephalic vesicles and mandibular and maxillary processes were identified. After oviposition the development and differentiation of the tissues and organs completes, the body scales develop, the characteristic pattern of pigmentation establishes and the embryo grows and consumes the yolk. On average, the incubation period lasts 55 days. Differences in the stage of development at oviposition among females of different populations were observed. Embryonic retention could extend up to advanced stages of development.  相似文献   

6.
There is currently little information regarding the metabolic fates of yolk lipid and individual fatty acids during embryonic development of free-living avian species. Here we report the pattern of lipid utilization during embryonic development of the coot (Fulica atra) and the moorhen (Gallinula chloropus), two related species producing precocial offspring from eggs with a distinctive fatty acid composition and with an incubation period similar to that of the chicken. By the time of hatching, the proportions of the initial yolk lipid that had been transferred to the embryo were 88.2% and 79.8% for the coot and moorhen respectively. During the whole incubation period, 42.9% and 40.0% of the initial yolk lipid of the coot and moorhen respectively were lost from the system due to oxidation for energy, equating to 47.8% and 50.0% respectively of the actual amount of lipid transferred over this time. Thus, the lipid received by the embryos of both species is partitioned almost equally between the alternative fates of energy metabolism and incorporation into tissue lipids. In the coot, this 50:50 split between oxidation and tissue formation was maintained during the hatching process. The proportions of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) in the yolk lipids of these species were 2.5-3.5 times higher than in eggs of domestic poultry. In contrast to the situation in the chicken, there was no preferential uptake of 22:6n-3 from the yolk during coot and moorhen development. The fatty acid compositions of the whole body lipids of the coot and moorhen hatchlings were almost identical to those of the initial yolks indicating that, unlike the chicken, these species display relatively little overall biomagnification of 20:4n-6 and 22:6n-6 during development. It is suggested that the yolk fatty acid profiles of the coot and moorhen are particularly well matched to the requirements of the embryo, reducing the need for selective uptake of 22:6n-3 and for the overall biomagnification of 22:6n-3 and 20:4n-6.  相似文献   

7.
Alligator eggs are not turned during incubation, instead the embryo adheres to the top inside of the shell. Turning is alleged to shear off the embryo and kill it. Avian egg turning allegedly facilitates embryonic development by stimulating growth of the area vasculosa and minimizing the effects of unstirred yolk and albumen layers. From day 10 to day 45 of incubation, alligator eggs were experimentally turned, gently, through ± 60° in an hourly cycle. This turning regime killed only 6 out of 25 embryos. Compared with unturned controls, no significant effects were observed on the growth, production of extraembryonic fluids or utilization of albumen and yolk for those embryos that survived turning. The protein concentration of amniotic fluid at various stages of alligator development was examined in eggs incubated at 30 and 33°C. The fluid contained very little protein (max <8 mg) at any time: the protein concentration did not change consistently as development progressed. Differences in response to egg turning in birds and reptiles may be associated with the length of the incubation period, the protein content of the albumen and the mechanism of albumen utilization.  相似文献   

8.
Egg quality may mediate maternal allocation strategies according to progeny sex. In vertebrates, carotenoids have important physiological roles during embryonic and post-natal life, but the consequences of variation in yolk carotenoids for offspring phenotype in oviparous species are largely unknown. In yellow-legged gulls, yolk carotenoids did not vary with embryo sex in combination with egg laying date, order and mass. Yolk lutein supplementation enhanced the growth of sons from first eggs but depressed that of sons from last eggs, enhanced survival of daughters late in the season, and promoted immunity of male chicks and chicks from small eggs. Lack of variation in egg carotenoids in relation to sex and egg features, and the contrasting effects of lutein on sons and daughters, do not support the hypothesis of optimal sex-related egg carotenoid allocation. Carotenoids transferred to the eggs may rather result from a trade-off between opposing effects on sons or daughters.  相似文献   

9.
Summary

Embryo morphometry and developing time from just-laid eggs until hatching were described in the palaemonid prawn, Macrobrachium borellii, using a rapid non-invasive staging method. Embryos were kept in the laboratory under controlled conditions and development divided into seven stages according to major morphological characteristics. This lecithotrophic, freshwater shrimp has a highly abbreviated type of hatching development after 39 ± 2 days as postlarvae at 24°C. Morphometry was recorded using a stereoscopic microscope with an image analyzer. Area, perimeter, maximum and minimum diameters and shape were measured in yolk sac, egg-coat and eye, respectively, and they were statistically selected as the best to define the stages. Eggs are ovoid with a maximum diameter that varies from the moment of oviposition to the time of hatching from 1.5 to 2.0 mm, respectively. Water content and egg size increase along with development, whereas egg shape only varies just before hatching when the egg becomes strongly ovoid. Egg coat and eye variables significantly increase as the embryo develops while all yolk variables decrease as the embryo consumes the vitellus. Yolk represents more than 95% of the egg at the time of oviposition, falling to 22% by the time of hatching. The major yolk area decrease is observed between stages 4 and 5, which is coincident with a marked increase in the catabolism. Using only egg coat, yolk and eye shape and maximum diameter, a researcher can straightforwardly identify a developing stage with an accuracy ranging from 70 to 100%. This tool may be employed in other species provided they have transparent chorion.  相似文献   

10.
Maternal effects mediated by egg quality are important sources of offspring phenotypic variation and can influence the course of evolutionary processes. Mothers allocate to the eggs diverse antioxidants that protect the embryo from oxidative stress. In the yellow-legged gull (Larus michahellis), yolk antioxidant capacity varied markedly among clutches and declined considerably with egg laying date. Analysis of bioptic yolk samples from clutches that were subsequently partially cross-fostered revealed a positive effect of yolk antioxidant capacity on embryonic development and chick growth, but not on immunity and begging behaviour, while controlling for parentage and common environment effects. Chick plasma antioxidant capacity varied according to rearing environment, after statistically partitioning out maternal influences mediated by egg quality. Thus, the results of this study indicate that egg antioxidants are important mediators of maternal effects also in wild bird populations, especially during the critical early post-hatching phase.  相似文献   

11.
The early embryonic development and features of the developing embryo of the glowworm Rhagophthalmus ohbai are described chiefly by light microscopy, with emphasis on the germ rudiment formation and its phylogenetic implication. The egg period is 30-34 days at about 23 degrees C. The newly laid egg is a short ellipsoid, 1.09 by 0.78 mm in size, and the size increases to 1.15 by 0.95 mm by 17 days after oviposition. Cleavage is of the typical superficial type. The germ disk is formed by cell aggregation of the embryonic area at the anterior end of the egg. The central part of the germ disk then sinks into the yolk and the spherical germ rudiment is formed by fusion of the amnioserosal folds extended from all margins of the germ disk. The inner region of the germ rudiment soon becomes slender and develops into the short embryo, whereas the outer region facing the anterior end is extended to form the thin amnion. The embryo then rapidly elongates, the elongation being accompanied by embryo segmentation and formation of appendages. The submerged condition of the embryo persists until about 17 days after oviposition (about 1 day before embryonic revolution) and thereafter the embryo becomes superficial in position. The presence of the following embryonic characters in R. ohbai supports the molecular data placing it within the Lampyridae: 1) formation of a spherical germ rudiment near the anterior end of the egg, and 2) the submerged condition of the developing embryo persists until shortly before revolution.  相似文献   

12.
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296.  相似文献   

13.
The amylases were studied in the yolk of fertilized eggs and in the pancreases of the embryos of domestic fowls. The amylase activity in the yolk increased markedly from 13 days of incubation until hatching, but the activity decreased when the embryos were taken out of the eggs. The isoamylases in the yolk and in the pancreas of the embryo were identical electrophoretically. The amylase occurs mainly in the pancreas of the embryo. We think that the increase in amylase activity in the yolk of fertilized eggs during incubation depends upon the accumulation of pancreatic amylase synthesized by the developing embryo in the egg.  相似文献   

14.
Geographic variation in body size is of special interest because it affects nearly all aspects of an organism’s life. I examined whether differences in body size among four populations of the green anole lizard, Anolis carolinensis, were attributable to maternal investment in egg size and/or growth rates of embryos and juveniles. Larger body size and larger egg size relative to female size in the northern part of the range have been documented in this species, and suggested to be adaptive responses to more extreme winters. The current study confirmed the trends in adult size and egg size in the north, but rejected the trend of larger egg size relative to body size in the south. To control for differences in maternal investment in egg size among populations, I performed yolk removals on eggs from two northern populations to produce comparably sized eggs relative to one southern population. This manipulation was designed to minimize the confounding effect of maternal investment in yolk, the primary energy reserves for eggs, so that intrinsic differences in embryonic growth due to metabolism could be investigated. I found that differences in juvenile and, potentially, embryonic growth rates existed among populations of A. carolinensis, both due to and independent of differences in egg size. Juveniles from the northernmost population were bigger not only due to larger egg size, but also due to faster juvenile growth and possibly differences in developmental stage of oviposition or conversion of egg mass to hatchling mass. Larger body size may hold a number of advantages in northern populations of this species, including starvation resistance through winters and better competitive access to food resources and warmer microhabitats.  相似文献   

15.
孵化水热环境对渔异色蛇孵化卵和孵出幼体的影响   总被引:10,自引:6,他引:4  
渔异色蛇卵孵化时能从环境中吸收水分导致质量增加,卵质量的增加与初始卵质量和孵化基质湿度有关。较大幅度的孵化基质湿度变化对孵化期、孵化成功率、胚胎动用孵内物质和能量、孵出幼体的性比、大小和质量无显著影响。孵化期随温度升高而缩短,并显示极强的窝间差异。温度对孵出幼体的性别无影响,但显著影响孵化成功率、胚胎对卵内物质和能量的动用、幼体的大小和质量、躯干和剩余卵黄的质量。孵出幼体总长的两性差异不显著,但雌体体长大于雄体而尾长小于雄体。32℃不适于孵化渔异色蛇卵,该温度下孵出的幼体躯干发育不良,剩余孵黄较多,尾部均呈畸形,孵化过程中能量转化率较低。24℃和26℃中孵出的幼体躯干发育良好,孵化过程中能量转化率较高,各项被测定的幼体特征指标均极相似。  相似文献   

16.
Summary The morphological features during development of diapause and non-diapause eggs of the silkworm,Bombyx mori, were investigated by means of light and electron microscopy, with special reference to eggs up to 24 h after oviposition.The blastoderm and yolk cells began to be formed about 6 and 24 h after oviposition, respectively, in both the diapause and non-diapause eggs, indicating that the diapause and non-diapause eggs develop at similar rates at least until 24 h after oviposition.Specific changes in the distribution of yolk granules were observed during early development of the diapause egg. Its yolk granules gradually aggregated into clusters from the periphery toward the inside of the egg during the period of blastoderm formation. Aggregation of yolk granules was most noticeable about 12 h after oviposition and then they dispersed again before yolk cell formation. On the other hand, yolk granules of the non-diapause eggs remained dispersed during development.  相似文献   

17.
We measured oxygen consumption ( ) and carbon dioxide emission ( ) rates, air-cell gas partial pressures of oxygen (PAO2) and CO2 (PACO2), eggshell water vapour conductance and energy content of the ostrich (Struthio camelus) egg, ‘true hatchling’ and residual yolk, and calculated RQ and total oxygen consumption ( ) for ostrich eggs incubated at 36.5°C and 25% relative humidity. The pattern showed a drop of approximately 5% before internal pipping. just prior to internal pipping agrees with allometric calculations. Despite the higher incubation temperature compared to other studies, and the resultant shorter incubation duration (42 days), (91.7 l kg−1) was similar to a previously reported value. RQ values during the second half of incubation (approx. 0.68) were lower than expected for lipid catabolism. Prior to internal pipping, PAO2 and PACO2 were 98 and 48.3 torr (13.1 and 6.4 kPa), respectively. The growth pattern of the ostrich embryo is different from the typical precocial pattern, showing a time delay in the rapid growth phase. As a result, the lowered overall energy expenditure for tissue maintenance, as compared to other species, is reflected in the low yolk utilization and high residual yolk fraction of the whole hatchling dry mass. These could also result from the relatively short incubation period of the ostrich egg, thereby evading desiccation by excess water loss.  相似文献   

18.
Embryos of the direct-developing frog Eleutherodactylus coqui take up small quantities of yolk and yolk mineral early in incubation but increase their uptake of yolk reserves at later stages of development. Growth and accumulation of calcium and magnesium by embryos also occur slowly at first and at a higher rate later. Accumulation of calcium and magnesium by embryos is largely a function of variation in size of embryos, but uptake of phosphorus is unrelated to size. Althrough patterns of growth and uptake of mineral by embryonic coquis resemble those for embryos of oviparous amniotes, embryonic coquis do not deplete the yolk of its nutrients to the same degree. Thus, residual yolk of coqui hatchlings contains a high percentage of the nutrient reserves originally present in the egg. This difference between embryonic coquis and embryos of oviparous amniotes may indicate that transfer of nutrients from yolk to embryo becomes limiting during the grwoth phase. Alternatively, some aspects of the neurologic system are so poorly developed at hatching that coqui may not be able to find prey effectively. A large nutrient reserve could sustain hatchling while the neurologic system continues to mature.  相似文献   

19.
Maternal effects occur when offspring phenotype is affected by environmental factors experienced by the mother and, in egg-laying species, are often mediated via egg resources. There is currently great interest among behavioural ecologists in maternally allocated yolk androgens, especially their relationship with offspring sex and development. Such studies need embryonic tissue for sexing, however, requiring eggs to be incubated (usually for 3 days). Therefore, there are concerns about whether the androgen concentrations assayed reflect those allocated by the mother. In addition, studies showing sex biases in maternal allocation of androgens could be confounded if male and female embryos uptake or metabolise androgens at different rates. We ran a series of experiments using zebra finch (Taeniopygia guttata) eggs to address these potential confounding factors. First we showed, using eggs naturally incubated for up to 5 days, that eggs containing embryos had lower yolk androgen concentrations than eggs that had failed to form embryos. We then tested various hypotheses for this difference using controlled incubation treatments. Our results suggested that (a) embryo development causes the yolk to become progressively more diluted with albumin; and (b) between 3 and 5 days of incubation embryos start uptaking or metabolising androgens. Crucially, we found no decline in yolk androgen concentration at 3 days incubation, and no evidence for sex-specific rates of uptake or metabolism of androgens. This strongly suggests that yolk androgen levels up to 3 days incubation do reflect those allocated by the mother, and that studies of sex biased maternal allocation of yolk androgens are not confounded by sex differences in embryo development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号