首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

2.
Summary The projections of nerve fibres with immunoreactivity for the peptides enkephalin (ENK), gastrin-releasing peptide (GRP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP) were studied in canine small intestine by analysing the consequences of lesions of intrinsic and extrinsic nerves. Of peptides present in fibres supplying myenteric ganglia, GRP, SOM and VIP were in anally directed nerve pathways, whereas ENK and NPY were in orally directed pathways. Pathways ran for up to about 30 mm. SP fibres ran for short distances in both directions in the myenteric plexus. The circular muscle was supplied with ENK, NPY, SP and VIP fibres arising from the myenteric ganglia, whereas most mucosal SP and VIP fibres were deduced to arise from submucous ganglia. There were projections of fibres reactive for ENK, GRP, SOM, SP and VIP from myenteric ganglia to submucous ganglia. Antibodies to tyrosine hydroxylase were used to locate noradrenaline nerve fibres supplying the intestine; these fibres all disappeared when extrinsic nerves running through the mesentery to the small intestine were cut. It is deduced that there is an ordered pattern of projections of peptide-containing fibres in the canine intestine.  相似文献   

3.
Originally, intestinal motility was thought to be exclusively regulated by myenteric neurons. Some years ago, however, it was demonstrated in large mammals that submucous neurons also participate in the innervation of the circular smooth muscle layer. To date, no information is available about the submucous innervation of the longitudinal smooth muscle layer (LM). This study provides evidence that in the small intestine of large mammals, the LM is innervated not only by the myenteric plexus, but also by the inner and outer submucous plexuses (ISP and OSP). In the porcine small intestine, the involved neurons can be subdivided into the following neurochemically distinct populations: leu-enkephalin (ENK)- and/or substance P (SP)-IR neurons and nitric oxide synthase (NOS)- and/or vasoactive intestinal polypeptide (VIP)-IR neurons. In the myenteric plexus, the majority of VIP- and/or NOS-IR neurons and ENK(+)/SP(-)-IR neurons exhibit descending projections, whereas ENK(+)/SP(+)-IR neurons preferentially have ascending projections. The ENK(-)/SP(+)-IR neurons do not show a polarized pattern. In the OSP, only ENK(+)/SP(-)- and VIP(+)/NOS(-)-IR neurons display a polarized (descending) projection pattern, whereas no polarization can be noted in the ISP. Morphological analysis of the traced neurons revealed that, in general, myenteric descending LM motor neurons have larger cell bodies than ascending ones and, in addition, myenteric descending VIP- and/or NOS-IR neurons have longer projections than ENK and/or SP-IR neurons. In conclusion, the present study demonstrates the involvement of not only myenteric, but also submucous neurons in the innervation of the LM. The two major populations are descending nitrergic neurons and ascending tachykinergic motor neurons, but also other subpopulations with specific projection patterns and neurochemical features have been identified.  相似文献   

4.
Summary Galanin immunoreactivity was observed in nerve cell bodies and nerve fibres, but not in enteroendocrine cells, in the small intestine of the guinea-pig. Nerve terminals were found in the myenteric plexus, in the circular muscle, in submucous ganglia, around submucous arterioles, and in the mucosa. Lesion studies showed that all terminals were intrinsic to the intestine; those in myenteric ganglia arose from cell bodies in more orally placed ganglia. Myenteric nerve cells were also the source of terminals in the circular muscle. Galanin (GAL) was located in a population of submucous nerve cell bodies that also showed immunoreactivity for vasoactive intestinal peptide (VIP) and in a separate population that was immunoreactive for neuropeptide Y (NPY). Processes of the GAL/VIP neurons supplied submucous arterioles and the mucosal epithelium. Processes of GAL/NPY neurons ran to the mucosa. It is concluded that galanin immunoreactivity occurs in several functionally distinct classes of enteric neurons, amongst which are neurons controlling (i) motility, (ii) intestinal blood flow, and (iii) mucosal water and electrolyte transport.  相似文献   

5.
The aim of this study was to investigate the distribution of nitric oxide synthase (NOS)-containing nerve cells in the gastrointestinal tract of a reptile and to compare it with the pattern in other vertebrate classes. In the estuarine crocodile, Crocodylus porosus, NOS-positive nerve cell bodies and fibres were found in all regions of the gut examined. Most myenteric microganglia contained one or several NOS-immunoreactive neurons together with unlabelled neurons. The majority of the neurons were multipolar, ranging from 10 to 25 microns in diameter. Both the circular and the longitudinal muscle layers were innervated by NOS-immunoreactive nerve fibres, which mostly ran parallel to the muscle fibres. In addition, small blood vessels in the submucosa and on the serosal surface of the gut were innervated by NOS-immunoreactive fibres. Double labelling with antisera to NOS and vasoactive intestinal peptide (VIP) revealed three neuronal subpopulations. A small proportion of the NOS-immunoreactive cells also contained immunoreactivity to VIP while a majority of the VIP-immunoreactive cells were NOS immunoreactive. There were more nerve fibres showing VIP immunoreactivity than fibres with NOS immunoreactivity, although most of the latter also contained immunoreactivity to VIP. VIP-immunoreactive fibres often surrounded the NOS-immunoreactive nerve cells. These results suggest that neuronally released nitric oxide is likely to be involved in the control of gastrointestinal motility in the crocodile as in most other vertebrate species.  相似文献   

6.
The neurochemical coding of neurones located in ganglia of the nerve trunk accompanying the chicken ureter was analysed and quantified using NADPH-diaphorase reactivity and immunohistochemistry against tyrosine hydroxylase (TH), nitric oxide synthase (NOS), calbindin (CAL), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and calcitonin gene-related peptide (CGRP) in untreated or colchicine-treated preparation. Almost all neurones were either positive for TH (38%) or for SOM (60%). Only 4% of the neurones were both TH- and SOM-positive and 3% of the neurones exhibited neither TH nor SOM immunoreactivity. The relative numbers of NPY-, NOS-, CAL- and VIP-positive neurones were 57%, 28%, 14% and 7%, respectively. No SP- or CGRP-positive neurones were observed. All NADPH-diaphorase-positive neurones expressed NOS immunoreactivity. Only in some TH-positive neurones was NPY and/or NOS found. Four major subpopulations were found in the ureteric ganglia. The SOM-positive neurones were subdivided into SOM/NPY/NOS- (28% of all neurones), SOM/NPY- (18%) and SOM/CAL/NPY-positive neurones (14%). A subpopulation of these peptid- ergic neurones also contained VIP. About 35% of the neurones contained TH only. Neurones of all subpopulations (72% of the neurones), except most of the CAL-positive neurones, were encircled by dense plexus of varicose SP/CGRP-positive, presumably sensory nerve fibres. Dense plexus of VIP-positive fibres were observed around 89% of the neurones. The chemical coding of the neuronal subpopulations identified in the ganglia accompanying the chicken ureter resembled that observed in the ganglia of Remak’s nerve but was remarkably different from that of the autonomic neurones described in mammalian species.  相似文献   

7.
8.
The distribution of nitric oxide synthase-immunoreactive (NOS-IR) axons and their relationship to structures immunoreactive to vasoactive intestinal polypeptide (VIP), substance P (SP) and tyrosine hydroxylase (TH) were studied by means of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) technique or double-labelling immunofluorescence in the genital organs of cow and pig. Relevant neurons were also investigated in the pig. NOS-containing neural structures were TH-immunonegative in bovine or porcine genital organs, or in the studied ganglia. In the bovine ovary, NOS-IR nerves were neither VIP-IR nor SP-IR, whereas in the pig, most NOS-containing axons were also VIP-IR. The oviduct was supplied by single NOS/VIP- or NOS/SP-containing nerves, whereas in the uterus, NOS-IR axons were moderate in number, often being immunoreactive for VIP or SP. Numerous NOS/VIP-IR and NOS/SP-IR nerves were found in the vagina of both species. In all tissues studied, NOS-IR axons were mainly related to vascular smooth muscle. Most of the neurons of the paracervical ganglia and some neurons in dorsal root ganglia exhibited strong NOS activity. Only single neurons in sympathetic ganglia were NADPH-d-positive. Most nitrergic neurons in the autonomic ganglia were VIP-IR but SP-immunonegative. The sensory neurons were mostly NOS/SP-IR, whereas only single neurons co-expressed NOS and VIP immunoreactivity.  相似文献   

9.
The enteric nervous system is of great importance for maintenance and proper function of the gastrointestinal tract. The aim of this study was to quantify myenteric neuronal subpopulations expressing calcitonin gene-related peptide (CGRP), galanin, neuropeptide Y (NPY), somatostatin, vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in rat colon in vivo and after culturing. Further we investigated if culturing in the presence of CGRP, galanin, VIP, S-nitroso-N-acetyl-d,l-penicillamine (SNAP, a NO donor) or N-nitro-l-arginine methyl ester (l-NAME, a NOS inhibitor) affect neuronal survival.

After 4 days of culturing the proportions of neurons expressing CGRP, NPY, somatostatin or VIP increased as compared to in vivo, while the proportions of neurons expressing galanin or NOS did not change. Neuronal survival was unaffected after culturing in media enriched with CGRP, galanin, VIP, SNAP or l-NAME. Neither did addition of CGRP, galanin nor VIP to the cultures affect the relative numbers of neurons expressing CGRP, galanin or VIP respectively. Addition of SNAP or l-NAME did not change the percentage of neurons expressing NOS.

In conclusion, cultured rat colonic myenteric neurons increase their expression of CGRP, NPY, somatostatin and VIP, suggesting that these neuropeptides are of importance for neuronal survival.  相似文献   


10.
Summary The distributions within the coeliac ganglion of different chemically coded subgroups of noradrenaline neurons, and the relationships between these neurons and nerve fibres projecting to the ganglion from the intestine, have been assessed quantitatively by use of an immunohistochemical double-staining method. Noradrenaline (NA) neurons made up 99% of all cell bodies. Of these, 21% were also reactive for somatostatin (NA/SOM neurons), 53% were also reactive for NPY (NA/NPY neurons), and 26% were not reactive for either peptide. NA neurons without reactivity for any of the peptides whose localization was tested have been designated NA/-. A small percentage, about 1%, of neurons were reactive for both NPY and SOM. The three major types of NA neurons were arranged in clumps or ribbons throughout the ganglia, with a tendency for NA/SOM neurons to be medial and NA/NPY neurons to be lateral in the ganglia. A small group of neurons (<1%) encoded with dynorphin, NPY and vasoactive intestinal peptide (VIP) was encountered. VIP-immunoreactive nerve terminals, projecting to the ganglion from cell bodies in the intestine, ended around NA/SOM and NA/neurons but not around NA/NPY neurons. Thus, the VIP axons from the intestine end selectively around neurons that modify intestinal function (NA/SOM and NA/-neurons) but not around neurons, the terminals of which supply blood vessels (NA/NPY neurons).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号