首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 230 毫秒
1.
Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and the DH population was derived from a commercial hybrid "Hanxiao" (lines SW-13 x L-118). Out of the 614 polyrnorphic markers, 43.49% were not assigned to any of the linkage groups (LGs). Chi-square tests showed that 42.67% markers were distorted from expected Mendelian segregation ratios, and the direction of distorted segregation was mainly toward the paternal parent L-118. After sequentially removing the markers that had an interval distance smaller than 1 cM from the upper marker, the overall quality of the linkage map was increased. Two hundred and sixty-eight molecular markers were mapped into 10 LGs, which were anchored to the corresponding chromosome of the B. rapa reference map based on com- mon simple sequence repeat (SSR) markers. The map covers 973.38 cM of the genome and the average interval distance between markers was 3.63 cM. The number of markers on each LG ranged from 18 (R08) to 64 (R07), with an average interval distance within a single LG from 1.70 cM (R07) to 6.71 cM (R06). Among these mapped markers, 169 were sequence-related amplified polymorphism (SRAP) molecular markers, 50 were SSR markers and 49 were random amplification polymorphic DNA (RAPD) markers. With further saturation to the LG9 the current map offers a genetic tool for loci analysis for important agronomic traits.  相似文献   

2.
Verticillium wilt is one of the most serious constraints to cotton production in almost all of the cotton-growing countries. In this study, "XinLuZaol" (XLZl), a susceptible cultivar Gossypium hirsutum L. and "Hai7124" (H7124), a resistant line G. barbadense, and their F2:3 families were used to map and study the disease index induced by verticillium wilt. A total of 430 SSR loci were mapped into 41 linkage groups; the map spanned 3 745.9 cM and the average distance between adjacent loci was 8.71 cM. Four and five quantitative trait loci (QTLs) were detected based on the disease index investigated on July 22 and August 24 in 2004, respectively. These nine QTLs explained 10.63-28.83% of the phenotypic variance, six of them were located on the D sub-genome. Two QTLs located in the same marker intervals may partly explain the significant correlation of the two traits. QTLs explaining large phenotypic variation were identified in this study, which may be quite useful in cotton anti-disease breeding.  相似文献   

3.
A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the Interspecific cross of "CRI 36 × Hal 7124" were genotyped at I 252 polymorphic loci Including a novel marker system, target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple se- quence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were Identified In tetraploid cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.  相似文献   

4.
Using 219 F2 Individuals developed by crossing the genetic standard line TM-1 and the multiple dominant marker line T586 In Gossyplum hirsutum L., a genetic linkage map with 19 linkage groups was constructed based on simple sequence repeat (SSR) markers. Compared with our tetraploid backboned molecular genetic map from a (TM-1xHal 7124)xTM-1 BC1 population, 17 of the 19 I|nkage groups were combined and anchored to 12 chromosomes (sub-genomes). Of these groups, four morphological marker genes In T586 had been mapped Into the molecular linkage map. Meanwhile, three quantitative trait loci for lint percentage were tagged and mapped separately on the A03 linkage group and chromosome 6.  相似文献   

5.
This study introduces the construction of the first intraspacific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F2 plants derived from the cross of two Asiatic parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR pdmers with better polymorphisms were picked out to analyze the F2 population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, Including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) ≥ 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the At and Dt sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid.  相似文献   

6.
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F1 cross family (Laminaria iongissima Aresch. × L. Japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To Investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.  相似文献   

7.
Genetic mapping provides a powerful tool for quantitative trait loci (QTL) analysis at the molecular level. A simple sequence repeat (SSR) genetic map containing 590 markers and a BCI population from two cultivated tetraploid cotton (Gossypium hirsutum L.) cultivars, namely TM-1 and Hai 7124 (G. barbadense L.), were used to map and analyze QTL using the composite interval mapping (CIM) method. Thirty one QTLs, 10 for lobe length, 13 for lobe width, six for lobe angle, and two for leaf chlorophyll content, were detected on 15 chromosomes or linkage groups at logarithm of odds (LOD)≥2.0, of which 15 were found for leaf morphology at LOD≥3.0. The genetic effects of the QTL were estimated. These results are fundamental for marker-assisted selection (MAS) of these traits in tetraploid cotton breeding.  相似文献   

8.
Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.  相似文献   

9.
To fine map the previously detected quantitative trait loci (QTLs) affecting milk production traits on bovine chromosome 6 (BTA6), 15 microsatellite markers situated within an interval of 14.3 cM spanning from BMS690 to BM4528 were selected and 918 daughters of 8 sires were genotyped. Two mapping approaches, haplotype sharing based LD mapping and single marker regression mapping, were used to analyze the data. Both approaches revealed a quantitative trait locus (QTL) with significant effects on milk yield, fat yield and protein yield located in the segment flanked by markers BMS483 and MNB209, which spans a genetic distance of 0.6 cM and a physical distance of 1.5 Mb. In addition, the single marker regression mapping also revealed a QTL affecting fat percentage and protein percentage at marker DIK2291. Our fine mapping work will facilitate the cloning of candidate genes underlying the QTLs for milk production traits.  相似文献   

10.
To investigate the genetic basis of drought tolerance in soybean (Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefengl (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and Dlb, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.  相似文献   

11.
Root growth and thickening plays a key role in the final productivity and even the quality of storage roots in root crops. This study was conducted to identify and map quantitative trait loci (QTLs) affecting root morphological traits in Brassica rapa by using molecular markers. An F2 population was developed from a cross between Chinese cabbage (Brassica rapa ssp. chinensis) and turnip (B. rapa ssp. rapifera), which differed greatly in root characters. A genetic map covering 1837.1 cM, with 192 marker loci and 11 linkage groups, was constructed by using this F2 population. The F3 families derived from F2 plants were grown in the field and evaluated for taproot traits (thickness, length, and weight). QTL analysis via simple interval mapping detected 18 QTLs for the 3 root traits, including 7 QTLs for taproot thickness, 5 QTLs for taproot length, and 6 QTLs for taproot weight. Individually, the QTLs accounted for 8.4-27.4% of the phenotypic variation. The 2 major QTLs, qTRT4b for taproot thickness and qTRW4 for taproot weight, explained 27.4% and 24.8% of the total phenotypic variance, respectively. The QTLs for root traits, firstly detected in Brassica crops, may provide a basis for marker-assisted selection to improve productivity in root-crop breeding.  相似文献   

12.
中国白菜RAPD分子遗传图谱的构建   总被引:19,自引:0,他引:19  
A molecular genetic map of Brassica campestris L. (syn. B. rapa) was constructed based on the segregation of 99 RAPDs (random amplified polymorphic DNAs) markers from eighty-four 10-base random primers using DNA samples extracted from F2 population of turnip (B. campestris L. ssp. rapifera Metzg) × Chinese cabbage (B. campestris L. ssp. pekinensis Lour. Olsson). This genetic map covered 1 632.4 cM (centiMorgan) genome (Kosambi Function) with 16.5 cM mean intervals between flanking markers and defined thirteen linkage groups, in which the longest linkage group is 267.5 cM with 20.6 cM mean interval and the shortest linkage group is 62.2 cM with 15.6 cM mean interval. The size and distribution of linkage groups in this map is similar to other RFLP maps and karyotype data in B. campestris.  相似文献   

13.
Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL.  相似文献   

14.
Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.  相似文献   

15.
A number of clubroot resistant (CR) Chinese cabbage cultivars have been developed in Japan using resistant genes from CR European fodder turnips (B. rapa ssp. rapifera). Clubroot resistance in European fodder turnips are known to be controlled by the combined action of several dominant resistance genes. We have developed three Chinese cabbage clubroot-resistant doubled haploid (DH) lines-T136-8, K10, and C9-which express resistance in different manners against two isolates of Plasmodiophora brassicae, M85 and K04. Depending on the isolates, we identified two CR loci, CRk and CRc. CRk was identified by quantitative trait loci (QTL) analysis of an F(2) population derived from a cross between K10 and Q5. This locus showed resistance to both isolates and is located close to Crr3 in linkage group R3. The other locus, CRc was identified by QTL analysis of an F(2) population derived from a cross between C9 and susceptible DH line, 6R. This locus was mapped to linkage group R2 and is independent from any published CR loci. We developed sequence-tagged site markers linked to this locus.  相似文献   

16.
L Zhang  J Luo  M Hao  L Zhang  Z Yuan  Z Yan  Y Liu  B Zhang  B Liu  C Liu  H Zhang  Y Zheng  D Liu 《BMC genetics》2012,13(1):69-8
ABSTRACT: BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.  相似文献   

17.
Genetic maps are useful for detecting quantitative trait loci (QTL) associated with quantitative traits and for marker-assisted selection (MAS) in breeding. In this research, we used the wheat × maize method to develop a doubled haploid (DH) population derived from the synthetic hexaploid wheat (SHW) line TA4152-60 and the North Dakota hard red spring wheat line ND495. The population consisted of 213 lines, of which a subset of 120 lines was randomly selected and used to construct linkage maps of all 21 chromosomes and for QTL detection. The whole genome maps consisted of 632 markers including 410 SSRs, 218 TRAPs, 1 RFLP, and 3 phenotypic markers, and spanned 3,811.5 cM with an average density of one marker per 6.03 cM. Telomere sequence-based TRAPs allowed us to define the ends of seven linkage groups. Analysis revealed major QTLs associated with the traits of days to heading on chromosomes 5A and 5B, plant height on chromosomes 4D and 5A, and spike characteristics on chromosomes 3D, 4A, 4D, 5A and 5B. The DH population and genetic map will be a useful tool for the identification of disease resistance QTL and agronomically important loci, and will aid in the identification and development of markers for MAS. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

18.
Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.  相似文献   

19.
We report the first genetic linkage map of white lupin (Lupinus albus L.). An F8 recombinant inbred line population developed from Kiev mutant x P27174 was mapped with 220 amplified fragment length polymorphism and 105 gene-based markers. The genetic map consists of 28 main linkage groups (LGs) that varied in length from 22.7 cM to 246.5 cM and spanned a total length of 2951 cM. There were seven additional pairs and 15 unlinked markers, and 12.8% of markers showed segregation distortion at P < 0.05. Syntenic relationships between Medicago truncatula and L. albus were complex. Forty-five orthologous markers that mapped between M. truncatula and L. albus identified 17 small syntenic blocks, and each M. truncatula chromosome aligned to between one and six syntenic blocks in L. albus. Genetic mapping of three important traits: anthracnose resistance, flowering time, and alkaloid content allowed loci governing these traits to be defined. Two quantitative trait loci (QTLs) with significant effects were identified for anthracnose resistance on LG4 and LG17, and two QTLs were detected for flowering time on the top of LG1 and LG3. Alkaloid content was mapped as a Mendelian trait to LG11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号