首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The suppressive effect of human natural killer (NK) cells on B cell differentiation induced by pokeweed mitogen (PWM) was investigated. By using Percoll discontinuous density gradient centrifugation, peripheral blood nonphagocytic and nonadherent mononuclear cells were divided into low and high density fractions for which NK cells (Large granular lymphocytes, LGL) and T cells were enriched, respectively. These fractionated mononuclear cells were co-cultured with purified autologous B cells in the presence of PWM, and were examined for their helper and suppressor activities on differentiation of B cells to immunoglobulin-(IgM and IgG) producing cells by a highly sensitive reversed hemolytic plaque assay. The T cell-enriched high density fractions provided help for B cell differentiation to levels higher than that of unfractionated mononuclear cells. On the other hand, the NK-enriched low density fractions did not show helper activity, and when added to the culture of B cells plus helper T cells, they markedly suppressed B cell differentiation. This suppressive activity, as well as the NK cytotoxicity of the NK-enriched fractions, was abrogated by treatment of the cells with monoclonal antibody against human NK cells (HNK-1), but not against T cells (OKT3) in the presence of complement. NK cells also suppressed PWM-driven B cell differentiation in the presence of T4+ (helper/inducer T) but not T8+ (cytotoxic/suppressor T) cells; however, they showed no inhibition of soluble factor-induced B cell differentiation assayed in the absence of helper T cells. It is thus concluded that human peripheral blood NK cells exhibit an ability to suppress PWM-driven B cell differentiation, possibly by acting through the effect on helper T cells but not directly on B cells.  相似文献   

2.
Mycobacterium avium frequently causes disseminated disease in patients with advanced AIDS with low CD4 counts. The effects of T lymphocyte on intracellular M. avium replication were examined. Plastic adherent monocytes and nonadherent lymphocytes were separated from peripheral blood mononuclear cells. After infection with M. avium, monocytes were cultured with or without autologous lymphocytes (1-10 cells/monocyte) for up to 7 days. Addition of lymphocytes to M. avium-infected monocytes significantly decreased intracellular M. avium growth after 7 days culture (n = 11, P < 0.01, paired t test) and increased IFN-gamma production compared to monocytes alone. Neutralizing IFN-gamma partially abrogated lymphocyte activity. CD4 depletion diminished anti-mycobactericidal effects and CD8(+) lymphocytes increased intracellular M. avium growth (P < 0.05, n = 5, t test). These data suggest that interactions between monocytes and nonadherent cell fractions such as CD4(+) T cells and NK cells are important in intracellular M. avium growth modulation in monocytes from healthy humans.  相似文献   

3.
To determine whether natural killer (NK) cells are the cells responsible for inhibition of outgrowth of Epstein-Barr virus (EBV)-infected autologous B lymphocytes, NK-enriched or NK-depleted populations were prepared by Percoll density gradient fractionation and complement lysis depletion of cells reacting with NK-specific monoclonal antibody HNK-1. These cells were then examined in parallel for NK activity and inhibition of outgrowth. NK-enriched low density cells inhibited outgrowth whereas NK-depleted high density cells did not. Low density cells treated with monoclonal antibodies HNK-1 and DR plus complement had little NK activity and failed to inhibit EBV-induced outgrowth, whereas these same cells treated with monoclonal antibodies OKT3 and DR plus complement had strong NK activity and caused marked inhibition of outgrowth. These findings indicate that NK cells rather than mature T cells, monocytes, or B cells, are responsible for inhibition of EBV-induced B cell outgrowth.  相似文献   

4.
The suppressive effect of human natural killer (NK) cells on Epstein-Barr virus (EBV)-induced immunoglobulin (Ig) synthesis by autologous B cells was investigated. By Percoll discontinuous density gradient centrifugation, low-density fractions enriched for NK cells were isolated from human peripheral blood lymphocytes. These NK-enriched fractions were added to purified autologous B cells in the presence of EBV, were cultivated for 8 days, and were examined for their suppressive effect on Ig synthesis by an enzyme-linked immunosorbent assay. The fractions markedly suppressed both IgM and IgG synthesis induced by EBV. It was possible to reduce the suppressive effect of NK-enriched cells by complement-dependent lysis of NK cells and Leu-11, but not by OKT3 monoclonal antibody, indicating that NK cells may be responsible for the suppression of Ig synthesis. Upon close examination of interferon (IFN) activity, it was revealed that the co-cultures of NK-enriched cells and EBV-infected B cells generated production of IFN-alpha, which might be produced by NK cells in response to EBV-stimulated B cells. Addition of anti-IFN-alpha but not anti-IFN-gamma serum almost completely abrogated the suppressive effect of NK-enriched cells on Ig synthesis, indicating that IFN-alpha produced are required for the NK cell-mediated suppression of Ig synthesis. However, addition of IFN-alpha into purified B cells showed no direct suppressive effect on EBV-induced Ig synthesis by B cells in the absence of NK cells. Nevertheless, NK cells when previously incubated with IFN-alpha and added to B cells showed a suppressor activity on Ig synthesis to a level higher than that of untreated NK controls. These results strongly suggest the possibility that NK cells display an interaction with EBV-infected B cells and produce IFN-alpha, which in turn activates NK cells. These activated NK cells suppress the Ig synthesis by B cells, which undergo transformation induced by EBV.  相似文献   

5.
The in vitro synthesis of interferon (IFN) by human lymphocytes stimulated in mixed-lymphocyte culture (MLC) was examined. The production of IFN in MLC was restricted to T lymphocytes and maximum levels of IFN were detected in supernatants from cells incubated for 5 to 7 days. The IFN produced was identified as IFN-gamma by antibody neutralization. To identify the T cell responsible for IFN production, purified T lymphocytes were separated into subpopulations after incubation in 5 mM theophylline. Theophylline-resistant (T-res) T cells retain the ability to form sheep erythrocyte (SRBC) rosettes and are depleted in IgG Fc receptor-positive T cells (T gamma cells). Theophylline-sensitive (T-sens) T cells fail to form rosettes after theophylline treatment and are enriched in T gamma cells. In addition, analyses using monoclonal antibodies showed that T-sens cells were enriched in OKM1-, HNK-1-, and 7.2-positive cells and T-res cells contained increased numbers of 9.6- and OKT4-positive cells. Following MLC stimulation, equivalent levels of IFN-gamma were produced by T-res and T-sens cells and both subpopulations maintained natural killer (NK)-like cytotoxicity against K562 target cells. Addition of partially purified IFN-gamma to unstimulated T-res and T-sens cells resulted in the maintenance of NK-like cytotoxicity in a manner analogous to that observed after MLC. Additional experiments indicated that peripheral blood lymphocytes depleted of 9.6- or OKM1-positive cells by complement-mediated lysis were devoid of cytotoxicity against K562 cells. Furthermore, MLC stimulation of 9.6- or OKM1-depleted cells failed to restore cytotoxic activity. In summary, these experiments demonstrate that the maintenance of NK-like cytotoxicity by MLC-stimulated T cells is associated with the synthesis of IFN-gamma, that MLC stimulated T-res and T-sens T-cell subsets produce equivalent amounts of IFN, and that 9.6- or OKM1-positive cells are required for the maintenance of NK-like cytotoxicity in MLC.  相似文献   

6.
Addition of serotonin to mixtures of target cells and natural killer (NK)-enriched human mononuclear cells (MNC) in a 4-hr 51Cr-release assay strongly augmented NK cell cytotoxicity (NKCC) vs K562, Chang, or Molt-4 target cells. The effect was dose dependent at serotonin concentrations of 10(-4) to 10(-7) M, expressed at several effector to target cell ratios, and required the presence of accessory monocytes. A 5-HT1-specific receptor agonist, 8-OH-DPAT, mimicked the enhancing properties of serotonin with similar potency. Equimolar concentrations of the mixed 5-HT1/5-HT2 receptor antagonist cyproheptadine, but not the 5-HT2-specific antagonist ketanserin, completely blocked the serotonin-induced NKCC enhancement. Monocyte/NK cell mixtures incubated with serotonin for 1 hr produced a soluble factor that could enhance the cytotoxicity of autologous, NK-enriched cells depleted of monocytes, which did not respond to serotonin alone. The factor displayed no IFN or IL 2 activity as judged by the lack of antiviral activity and inability to support the growth of an IL 2-dependent cell line. In the presence of monocytes, serotonin (10(-5) M) was considerably more effective than human IFN-alpha or IFN-gamma at optimal concentrations and was about equally effective as IL 2 at a final concentration of 50 U/ml in a short-term NK assay. The potency and efficacy for serotonin were similar to that earlier reported for histamine in monocyte-containing effector cells. The NKCC-enhancing effect of serotonin was additive to that induced by IFN-alpha, IFN-gamma, or IL 2, but not to histamine. The presented data suggest an earlier unrecognized, serotonin receptor-mediated regulation of human NK cells.  相似文献   

7.
Unstimulated human peripheral blood mononuclear cells from healthy donors exhibited spontaneous cytotoxicity against noncultured solid tumor targets in a 12- to 24-hr 51Cr release or 111In release assay. Both purified monocytes (greater than 99% monocytes) and natural killer (NK)-enriched lymphocytes exhibited comparable levels of spontaneous cytotoxicity against fresh melanoma tumor targets. This cytotoxicity was observed under endotoxin-free conditions. NK-depleted lymphocytes did not lyse the melanoma targets. Culture supernatants of monocytes incubated with the melanoma tumor cells did not exhibit cytotoxic activity against these targets. Purified monocytes lacked NK activity against the K562 targets in a 4-hr 51Cr release assay. Treatment of the monocytes with anti-Leu 1 1b and anti-Leu7 monoclonal antibodies plus complement did not reduce monocyte-mediated lysis of the melanoma targets, demonstrating that contaminating NK cells, if any, were not responsible for the lysis of noncultured melanoma targets by monocytes. In contrast, Leu 1 1b+ NK cells were responsible for the lysis of the melanoma targets by NK-enriched lymphocytes. The addition of recombinant interferon-gamma (rIFN-gamma), but not lipopolysaccharide, into the 51Cr release assay or pretreatment of monocytes with rIFN-gamma significantly increased their cytotoxicity against noncultured solid tumor cells. Monocytes cultured for 3 days with medium alone lost their cytotoxic activity. The addition of rIFN-gamma from the beginning of these cultures prevented the loss of the cytotoxic activity of monocytes. In summary, both unstimulated monocytes and NK-enriched lymphocytes exhibit comparable levels of spontaneous cytotoxicity against fresh solid tumor targets.  相似文献   

8.
Interferon (IFN) augments the cytotoxic function of natural killer (NK) and killer (K) cells. We have previously shown that all NK- and K-cell function resides in the HNK-1+ population of granular lymphocytes. The present experiments demonstrated that IFN significantly augmented the efficiency of purified HNK-1+ cells to perform both NK- and K-cell function. In contrast, HNK-1? cells could not lyse target cells even in the presence of IFN. IFN did not generate new HNK-1+ cells from the pool of HNK-1? cells. We then examined the possibility that IFN might induce the maturation of immature NK cells previously defined as having an HNK+T3+ phenotype and a paucity of cytoplasmic granules. However, no changes were observed either in the proportion of HNK-1+ cells expressing the T3 antigen or in the number of granules within each HNK-1+ cell even after an 18-hr incubation with IFN. While fresh HNK-1? cells lack NK-cell function, they can acquire NK-like activity without expressing the HNK-1 antigen after incubation with either alloantigens or mitogens. When incubated further with IFN, these alloantigen- or PHA-activated HNK-1? cells with NK-like activity demonstrated relatively little augmentation of their cytotoxicity. It is concluded that interferon exerts its influence on restricted subpopulations of cells, primarily HNK-1+ cells. Its mechanism appears to concern the cytotoxic event rather than influencing cellular maturation.  相似文献   

9.
Human T cell hybridomas were established by fusion of SH9 cells, the 6-thioguanine-resistant mutant line of human T lymphoma Hut 102-B2, with concanavalin A-stimulated human peripheral blood lymphocytes. Hybridoma line L38 produced a macrophage activating factor (MAF) with the ability to activate human peripheral blood monocytes to show enhanced cytotoxicity against human colon adenocarcinoma HT-29 cells in a 72-hr 125iododeoxyuridine-release assay. The L38 line was then cloned by the limiting dilution technique and two sublines, L38B and L38D, were found to produce high levels of MAF constitutively. Interferon activity was also detected in L38B and L38D supernatants. When interferon activity was neutralized with specific antiserum to purified human immune interferon (IFN-gamma), MAF activity was abrogated. To confirm that the MAF activity is indeed due to IFN-gamma, IFN-gamma was purified from the culture supernatant of another human T cell hybridoma, L265K2, a cell line known to produce high levels of IFN-gamma. Two highly purified IFN-gamma fractions with m.w. of 20,000 and 25,000, respectively, were obtained by NaDodSO4/polyacrylamide gel electrophoresis (SDS-PAGE). Similar fractions were obtained from IFN-gamma derived from human peripheral blood lymphocyte (PBL) cultures induced with 12-0-tetradecanoylphorbol-13-acetate (TPA) and phytohemagglutinin (PHA). In comparison, Escherichia coli-derived recombinant human IFN-gamma separated by SDS-PAGE yielded two major active fractions with m.w. of 17,000 and 34,000. With all three types of preparations, a close correlation was found between the presence of IFN-gamma activity demonstrable in an antiviral assay and MAF activity in individual fractions. Substantial quantitative differences were observed in the ability of various human IFN to activate monocytes. Although no MAF activity was detected with IFN-alpha and IFN-beta at concentrations up to 200 U/ml, both natural and recombinant IFN-gamma showed marked MAF activity at concentrations as low as 0.3 to 1 U/ml.  相似文献   

10.
Natural killer (NK) cells were tested for their ability to suppress antigen-induced antibody responses in vitro. Asialo-GM1+ (ASGM1+) cells were prepared from nylon-wool-nonadherent spleen cells obtained from normal mice. After depletion of Ig+, L3T4+ and Lyt-2+ cells, the ASGM1+-enriched cell population had high NK activity which was abrogated by treatment with anti-ASGM1 and C'. This NK-enriched ASGM1+ cell fraction significantly suppressed the generation of antibody-producing cells when added to in vitro immunization cultures of primed spleen cells. Treatment of the NK-enriched cell population with anti-ASGM1 and C' abrogated the ability of these cells to suppress antibody responses. In vitro antibody production by purified B cells was also suppressed in the presence of the NK-enriched cell population, although the kinetics of the suppression differed from that observed with unfractionated spleen cells. In addition, the NK-enriched cell population suppressed the proliferation of the B cell line WEHI-279.1. Suppression of WEHI-279.1 cells was abrogated when the NK-enriched cell population was treated with anti-ASGM1 and C'. These results suggest that normal NK cells suppress the generation of antibody-producing B cells and that this occurs, at least in part, through a direct regulation of the B cell.  相似文献   

11.
This study documents the influence of rIL-4, IFN-gamma, and IFN-alpha on the production of IgE-BF and the expression of lymphocyte receptor for IgE or CD23 Ag (Fc epsilon R II) by human mononuclear cells. IL-4 increases the secretion of IgE-binding factor (BF) by highly purified B lymphocytes, adherent cells, and U937 monoblastic cells. The effect of IL-4 on purified B cells is augmented by costimulating the cells with F(ab')2 anti-IgM. IFN-gamma, IL-2, IL-1-alpha, or IL-1 beta and the low m.w. B cell growth factor have no effect on IgE-BF production by purified B cells even when they are used in combination with anti-IgM. Stimulation of purified T cells with IL-4 or IL-4 plus PMA leads to the production of very small amounts of IgE-BF that might well be derived from the contaminating non-T cells. IFN-gamma increases IgE-BF synthesis by unfractionated PBMC, T cell-depleted PBMC, adherent cells, and U937 cells suggesting that it induces monocytes to release IgE-BF, IFN-gamma suppresses the IL-4-induced Fc epsilon R II expression and IgE-BF production by highly purified B cells but not by PBMC or their T cell-depleted fractions. IFN-alpha inhibits IgE-BF production by IFN-gamma-stimulated PBMC and by IL-4-stimulated cells suggesting that it exerts its effect on B cells and on monocytes. Moreover IFN-alpha suppresses the IL-4-induced expression of Fc epsilon R II on B cells. Both IFN-alpha and IFN-gamma suppress the synthesis of IgE by PBMC in response to IL-4. Taken collectively the results indicate that: 1) IL-4 induces IgE-BF production by both B cells and monocytes, 2) IFN-gamma stimulates IgE-BF synthesis by monocytes but suppresses its production by IL-4-stimulated B cells, and finally 3) IFN-alpha inhibits IgE-BF synthesis in response to either IFN-gamma or IL-4.  相似文献   

12.
The role of mouse liver NK1.1 Ag(+) T (NKT) cells in the antitumor effect of alpha-galactosylceramide (alpha-GalCer) has been unclear. We now show that, whereas alpha-GalCer increased the serum IFN-gamma concentration and alanine aminotransferase activity in NK cell-depleted C57BL/6 (B6) mice and B6-beige/beige mice similarly to its effects in control B6 mice, its enhancement of the antitumor cytotoxicity of liver mononuclear cells (MNCs) was abrogated. Depletion of both NK and NKT cells in B6 mice reduced all these effects of alpha-GALCER: Injection of Abs to IFN-gamma also inhibited the alpha-GalCer-induced increase in antitumor cytotoxicity of MNCS: alpha-GalCer induced the expression of Fas ligand on NKT cells in the liver of B6 mice. Whereas alpha-GalCer did not increase serum alanine aminotransferase activity in B6-lpr/lpr mice and B6-gld/gld mice, it increased the antitumor cytotoxicity of liver MNCS: The alpha-GalCer-induced increase in survival rate apparent in B6 mice injected intrasplenically with B16 tumor cells was abrogated in beige/beige mice, NK cell-depleted B6 mice, and B6 mice treated with Abs to IFN-gamma. Depletion of CD8(+) T cells did not affect the alpha-GalCer-induced antitumor cytotoxicity of liver MNCs but reduced the effect of alpha-GalCer on the survival of B6 mice. Thus, IFN-gamma produced by alpha-GalCer-activated NKT cells increases both the innate antitumor cytotoxicity of NK cells and the adaptive antitumor response of CD8(+) T cells, with consequent inhibition of tumor metastasis to the liver. Moreover, NKT cells mediate alpha-GalCer-induced hepatocyte injury through Fas-Fas ligand signaling.  相似文献   

13.
Human peripheral blood mononuclear cells (PBMC) proliferated and generated non-specific cell-mediated cytotoxicity (CMC) after stimulation with a cell-wall glucomannan-protein (GMP) fraction of Candida albicans or chemically-inactivated intact microrganism. No effects were observed using other fungal cell wall components such as glucan or alkali-acid treated glucomannan. The highest CMC level was detected after 7-10 days of PBMC incubation in the presence of 50 micrograms/ml of whole Candida cells and the cytotoxic immunoeffectors elicited by these antigenic stimulations equally affected NK-susceptible (K562) and NK-resistant (Raji, Daudi and Jurkat) tumor cell lines. Both Interleukin-2 (IL-2) and gamma interferon (IFN-gamma) were produced by GMP-stimulated PBMC, the IL-2 peak production constantly preceding that of IFN production. GMP-induced generation of natural CMC was potentiated by the addition of IFN-gamma and a monospecific anti IFN-gamma serum totally abrogated both IFN activity and CMC generation. The cytolytic effectors were shown to be OKT3-, OKT8- and HLA-DR-. They did not possess typical NK markers (e.g. Leu-7 and AB8.28) but were partially recognized by A10, a IgG2a monoclonal antibody reacting to PBMC-NK lymphocytes and activated T cells. These results suggest that the antitumor cytolytic effectors generated in PBMC cultures exposed to Candida material belong either to a discrete subset of natural effectors lacking classical NK markers or to other lymphokine-activated cells. This study also suggests that the human indigenous microrganisms C.albicans may play a role in raising nonspecific antitumor effects in normal host.  相似文献   

14.
We have investigated effects of histamine on the spontaneous cytotoxic activity of human natural killer (NK) cells in vitro. Addition of histamine (10(-3) to 10(-7) M) to assay cultures of Percoll-fractionated mononuclear cells (MNC) and erythroleukemic K 562 target cells resulted in a strong enhancement of the cytotoxicity of low-density MNC, enriched for NK cell cytotoxicity (NKCC). No enhancing or suppressing effects of histamine could be detected after removal of monocytes/adherent cells from the effector cell suspensions. When unfractionated MNC were used as NK effectors, similar results were obtained, i.e., dose-dependent enhancement of NKCC by histamine in the presence of monocytes and lack of effect in nonadherent effector cells. Freshly isolated monocytes displayed low spontaneous cytotoxicity against K 562 targets and were not induced by histamine. The histamine-induced enhancement was mimicked by dimaprit, a specific histamine H2-receptor agonist, but not by N-methyldimaprit, a chemical control for H2-receptor agonist activity of dimaprit. Furthermore, the enhancement was completely antagonized by the specific histamine H2-receptor antagonists cimetidine and ranitidine. The effect of histamine could not be ascribed to endogenous interferon (IFN) production, since no IFN activity could be detected in histamine-treated MNC effectors. Also, the enhancing effects of histamine and human leukocyte IFN-alpha were clearly additive. On the basis of these findings, we suggest that histamine, via specific activation of H2 receptors, may be an important regulator of human NK cell activity.  相似文献   

15.
Bacterial lipopolysaccharide (LPS) induced fresh murine splenocytes to produce interferon (IFN)-alpha/beta presumably by stimulation of the B lymphocytes and macrophages. However, when the splenocytes were "aged" for 24 to 72 hr in culture before addition of the LPS, the IFN response was significantly increased and was determined to be predominantly IFN-gamma. Because low levels of interleukin 2 (IL 2) were found to be spontaneously produced by the unstimulated splenocytes during the "aging" process, the effect of IL 2 on IFN induction by LPS in fresh splenocytes was examined. The addition of LPS to freshly prepared splenocyte cultures that were treated with human IL 2, either native or recombinant, before exposure to the LPS resulted in the LPS inducing large amounts of IFN-gamma. IL 2 alone induced little if any IFN in the splenocyte cultures. Depletion of T cells and large granular lymphocytes (LGL) from the cultures by anti-Thy-1.2 antibodies plus complement abrogated IFN-gamma production, and the addition of polymyxin B to "aged" splenocyte cultures resulted in loss of IFN production in response to LPS. Cultures that were enriched for T cells and LGL by passage through nylon wool produced significant amounts of IFN-gamma in response to LPS only if first treated with IL 2. Furthermore, the addition of splenic adherent cells to purified nylon wool-non-adherent (NWNA) cells augmented IFN-gamma production, whether or not the NWNA cells were pretreated with IL 2. This enhancement appeared to require direct contact between adherent cells and NWNA cells, because physical separation abrogated IFN production. The addition of recombinant IL 1 or LPS-conditioned supernatants of macrophage cultures did not replace adherent cell activity. These data demonstrate that LPS, which predominantly induces IFN-alpha/beta in fresh murine splenocytes, is able to stimulate T lymphocytes to produce IFN-gamma if the T cells are first exposed to endogenously produced or exogenously applied IL 2. Because IFN-gamma is a potent activator of the bactericidal and cytocidal potential of macrophages, the induction of IFN-gamma by bacterial LPS may play an important role in resistance/recovery mechanisms against bacterial infections.  相似文献   

16.
We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M. tuberculosis-infected monocytes. The frequency of CD8+ IFN-gamma+ cells was restored by soluble factors produced by activated NK cells and was dependent on IFN-gamma, IL-15, and IL-18. M. tuberculosis-activated NK cells produced IFN-gamma, activated NK cells stimulated infected monocytes to produce IL-15 and IL-18, and production of IL-15 and IL-18 were inhibited by anti-IFN-gamma. These findings suggest that NK cells maintain the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ T cells by producing IFN-gamma, which elicits secretion of IL-15 and IL-18 by monocytes. These monokines in turn favor expansion of Tc1 CD8+ T cells. The capacity of NK cells to prime CD8+ T cells to lyse M. tuberculosis-infected target cells required cell-cell contact between NK cells and infected monocytes and depended on interactions between the CD40 ligand on NK cells and CD40 on infected monocytes. NK cells link the innate and the adaptive immune responses by optimizing the capacity of CD8+ T cells to produce IFN-gamma and to lyse infected cells, functions that are critical for protective immunity against M. tuberculosis and other intracellular pathogens.  相似文献   

17.
Serotonin (10(-4) - 10(-7) M) augmented natural killer cell cytotoxicity (NKCC) of human CD16+/non-T lymphocytes in vitro against the NK-sensitive target cells K 562 erythroleukemic, Molt-4 lymphoma, Chang liver cells, and against EBV-transformed Daudi B-lymphoblastoid target cells by a mechanism of action involving a prostaglandin-and IL-1-independent accessory function of monocytes. No evidence for the production of intermediary, NK-enhancing cytokines by serotonin was obtained, suggesting a cell-to-cell-mediated interaction between monocytes and NK cells as a plausible mechanism of action for the NK-augmenting effect. Monocytes recovered by counter-current centrifugal elutriation but not monocytes recovered by adherence reconstituted the effect of serotonin when added to nonadherent NK cells. NK-enhancing effects of serotonin were mimicked by two 5-HT1A-type serotonin receptor agonists, 8-OH-DPAT and (+)-ALK. The development of NKCC in response to serotonin could be resolved into (i) an induction phase, dependent on the presence of accessory monocytes and serotonin, and (ii) an effector phase, independent of the presence of monocytes or serotonin. Serotonin-activated MNC continued to exert augmented cytotoxicity for at least 8 hr after the removal of serotonin and monocytes. In several experiments, serotonin-activated NK cells killed greater than 75% of K 562 target cells even at low effector to target cell ratios and low baseline NKCC. We suggest that serotonin may have a role in nonspecific tumor defence by regulating an earlier unrecognized interplay between monocytes and NK cells.  相似文献   

18.
NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs.  相似文献   

19.
The growth kinetics and population dynamics of recombinent interleukin-2 (rlL-2) stimulated human natural killer (NK) cell-enriched populations were studied in vitro. The NK-enriched populations was obtained from normal peripheral blood mononuclear cells (PBMNC) by immunomagnetic bead depletion of CD3(+) and CD5(+) T cells. The growth kinetics of NK cells, T cells, monocytes, and total cells are shown. In the absence of PBMNC accessory cells, the NK-enriched population showed limited expansion. In the presence of PBMNC accessory cells, the NK-enriched population expanded threefold more than in the absence of accessory cells due to increased NK cell growth rate and increased duration of exponential growth. Using a Transwell system, which separates two cell population by a polycarbonate membrane, the accessory cells were shown to act on the NK-enriched population via a diffusible factor. Accessory cell conditioned media was able to replace the accessory cell population to stimulate NK cell expansion. A monocyte-enriched population prepared by sheep red blood cell rosetting of T cells was extensively phenotyped and compared with the NK-enriched populations. Although the final cultured cells were phenotypically homogeneous for CD56(+)/CD3(-) NK cells, the initial NK precusor populations appear to be different. Namely, the NK cell precursors in the monocyte-enriched population were predominantly CD56(+)/CD2(-). Kinetic equations were formulated for this culture system and the effects of major culture variables are investigated.  相似文献   

20.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was found in this study to render normal human lymphocytes susceptible to allogeneic and autologous natural killer (NK) cell lysis. Both T and non-T cells became susceptible after culture for 3 days in the presence of 1 ng/ml TPA. Effector cells were nonadherent mononuclear cells of low density, enriched for large granular lymphocytes and HNK-1+ cells. Activation of effector cells with interferon increased lysis of TPA-treated lymphocytes. The present system may provide a new model to study NK cell target structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号