首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Some previously unidentified short interspersed repetitive elements (SINEs) and long interspersed repetitive element (LINEs) were isolated from various higher elasmobranchs (sharks, skates, and rays) and characterized. These SINEs, members of the HE1 SINE family, were tRNA-derived and were widespread in higher elasmobranches. The 3'-tail region of this SINE family was strongly conserved among elasmobranchs. The LINEs, members of the HER1 LINE family, encoded an amino acid sequence similar to that encoded by the chicken CR1 LINE family, and they contained a strongly conserved 3'-tail region in the 3' untranslated region. This tail region of the HER1 LINE family was almost identical to that of the HE1 SINE family. Thus, the HE1 SINE family and the HER1 LINE family provide a clear example of a pair of SINEs and LINEs that share the same tail region. Conservation of the secondary structures of the tail regions, as well as of the nucleotide sequences, between the HE1 SINE family and HER1 LINE family during evolution suggests that SINEs utilize the enzymatic machinery for retroposition of LINEs through the recognition of higher-order structures of the conserved 3'-tail region. A discussion is presented of the parasitism of SINEs on LINEs during the evolution of these retroposons.  相似文献   

2.
3.
A repetitive element of approximately 200 bp was cloned from harbour seal (Phoca vitulina concolour) genomic DNA. The sequence of the element revealed putative RNA polymerase III control boxes, a poly A tail and direct terminal repeats characteristic of SINEs. Sequence and secondary structural similarities suggest that the SINE is derived from a tRNA, possibly tRNA-alanine. Southern blot analysis indicated that the element is predominately dispersed in unique regions of the seal genome, but may also be present in other repetitive sequences, such as tandemly arrayed satellite DNA. Based on slot-blot hybridization analysis, we estimate that 1.3 x 10(6) copies of the SINE are present in the harbour seal genome; SINE copy number based on the number of clones isolated from a size-selected library, however, is an order of magnitude lower (1-3 x 10(5) copies), an estimate consistent with the abundance of SINEs in other mammalian genomes. Database searches found similar sequences have been isolated from dog (Canis familiaris) and mink (Mustela vison). These, and the seal SINE sequences are characterized by an internal CT dinucleotide microsatellite in the tRNA-unrelated region. Hybridization of genomic DNA from representative species of a wide range of mammalian orders to an oligonucleotide (30mer) probe complementary to a conserved region of the SINE confirmed that the element is unique to carnivores of the superfamily Canoidea.  相似文献   

4.
Lake Malawi is home to more than 450 species of endemic cichlids, which provide a spectacular example of adaptive radiation. To clarify the phylogenetic relationships among these fish, we examined the presence and absence of SINEs (short interspersed repetitive elements) at orthologous loci. We identified six loci at which a SINE sequence had apparently been specifically inserted by retroposition in the common ancestor of all the investigated species of endemic cichlids in Lake Malawi. At another locus, unique sharing of a SINE sequence was evident among all the investigated species of endemic non-Mbuna cichlids with the exception of Rhamphochromis sp. The relationships were in good agreement with those deduced in previous studies with various different markers, demonstrating that the SINE method is useful for the elucidation of phylogenetic relationships among cichlids in Lake Malawi. We also characterized a locus that exhibited transspecies polymorphism with respect to the presence or absence of the SINE sequence among non-Mbuna species. This result suggests that incomplete lineage sorting and/or interspecific hybridization might have occurred or be occurring among the species in this group, which might potentially cause misinterpretation of phylogenetic data, in particular when a single-locus marker, such as a sequence in the mitochondrial DNA, is used for analysis. Received: 15 December 2000 / Accepted: 30 January 2001  相似文献   

5.
6.
Two new short retroposon families (SINEs) have been found in the genome of springhare Pedetes capensis (Rodentia). One of them, Ped-1, originated from 5S rRNA, while the other one, Ped-2, originated from tRNA-derived SINE ID. In contrast to most currently active mammalian SINEs mobilized by L1 long retrotransposon (LINE), Ped-1 and Ped-2 are mobilized by Bov-B, a LINE family of the widely distributed RTE clade. The 3' part of these SINEs originates from two sequences in the 5' and 3' regions of Bov-B. Such bipartite structure of the LINE-derived part has been revealed in all Bov-B-mobilized SINEs known to date (AfroSINE, Bov-tA, Mar-1, and Ped-1/2), which distinguishes them from other SINEs with only a 3' LINE-derived part. Structural analysis and the distribution of Bov-B LINEs and partner SINEs supports the horizontal transfer of Bov-B, while the SINEs emerged independently in lineages with this LINE.  相似文献   

7.
Porcine SINEs: Characterization and use in species-specific amplification   总被引:1,自引:0,他引:1  
A porcine repetitive DNA sequence has been isolated from an intron of the glucose phosphate isomerase gene. The copy number of this and related sequences was estimated to be approximately 10(5) copies per genome. The sequence possesses all the characteristics of short interspersed elements (SINEs) described in other mammals: The repeat is 300 bp in length, has an poly(A)stretch, and contains insertion duplication sites. Homology to seven other porcine sequences, which also have the characteristics of SINEs, has been demonstrated. Primer oligonucleotides, based on conserved regions in the SINE sequences, have been synthesized. Using these primers, PCR-mediated specific amplification of porcine sequences was demonstrated from pig x mouse and pig x hamster hybrid cell lines. Cloning and sequencing of some amplified porcine sequences verify that the sites of priming are SINE sequences.  相似文献   

8.
Lake Tanganyika harbors numerous endemic species of extremely diverse cichlid fish that have been classified into 12 major taxonomic groups known as tribes. Analysis of short interspersed element (SINE) insertion data has been acknowledged to be a powerful tool for the elucidation of phylogenetic relationships, and we applied this method in an attempt to clarify such relationships among these cichlids. We studied insertion patterns of 38 SINEs in total, 24 of which supported the monophyly of three clades. The other 14 loci revealed extensive incongruence in terms of the patterns of SINE insertions. These incongruencies most likely stem from a period of adaptive radiation. One possible explanation for this phenomenon is the extensive incomplete lineage sorting of alleles for the presence or absence of a SINE during successive speciation events which took place about 5-10 MYA. The present study is the first to report the successful application of the SINE method in demonstrating the existence of such possible "ancient" incomplete lineage sorting. We discuss the possibility that it might potentially be very difficult to resolve the species phylogeny of a group that radiated explosively, even by resolving the genealogies of more than 10 nuclear loci, as a consequence of incomplete lineage sorting during speciation.  相似文献   

9.
Short interspersed repetitive elements (SINEs) are widely distributed among the genomes of eukaryotes. We proposed previously that a SINE should be defined by the presence of a region homologous to a tRNA or to 7SL RNA, together with A-box and B-box promoter sequences, in order to distinguish SINEs from other short repetitive sequences, such as short segments of LINEs (long interspersed repetitive elements; Okada et al. Gene 205, 229–243, 1997). Numerous SINE sequences have been deposited to date in DNA databases. In some cases, however, designation of a particular sequence is problematic when the short repetitive sequence has been defined as a SINE without reference to the presence or absence of promoter elements specific for RNA polymerase III. We demonstrate here that four different sequences, namely, ARE1p, ARE2p, CetSINE1, and CetSINE2, each of which has been reported as a SINE, are, in fact, only partial sequences of members of a new subfamily of L1. We also demonstrate that members of this subfamily are distributed specifically among the genomes of cetartiodactyls. Received: 3 May 2000 / Accepted: 22 August 2000  相似文献   

10.
11.
The PstI family of elements are short, highly repetitive DNA sequences interspersed throughout the genome of the Bovidae. We have cloned and sequenced some members of the PstI family from cattle, goat, and buffalo. These elements are approximately 500 bp, have a copy number of 2 x 10(5) - 4 x 10(5), and comprise about 4% of the haploid genome. Studies of nucleotide sequence homology indicate that the buffalo and goat PstI repeats (type II) are similar types of short interspersed nucleotide element (SINE) sequences, but the cattle PstI repeat (type I) is considerably more divergent. Additionally, the goat PstI sequence showed significant sequence homology with bovine serine tRNA, and is therefore likely derived from serine tRNA. Interestingly, Southern hybridization suggests that both types of SINEs (I and II) are present in all the species of Bovidae. Dendrogram analysis indicates that cattle PstI SINE is similar to bovine Alu-like SINEs. Goat and buffalo SINEs formed a separate cluster, suggesting that these two types of SINEs evolved separately in the genome of the Bovidae.  相似文献   

12.
Several novel (sub)families of SINEs were isolated from the genomes of cetaceans and artiodactyls, and their sequences were determined. From comparisons of diagnostic nucleotides among the short interspersed repetitive elements (SINEs) in these (sub)families, we were able to draw the following conclusions. (1) After the divergence of the suborder Tylopoda (camels), the CHRS family of SINEs was newly created from tRNA(Glu) in a common ancestor of the lineages of the Suina (pigs and peccaries), Ruminantia (cows and deer), and Cetacea (whales and dolphins). (2) After divergence of the Suina lineage, the CHR-1 SINE and the CHR-2 SINE were generated successively in a common ancestor of ruminants, hippopotamuses, and cetaceans. (3) In the Ruminantia lineage, the Bov-tA SINE was generated by recombination between the CHR-2 SINE and Bov-A. (4) In the Suina lineage, the CHRS-S SINE was generated from the CHRS SINE. (5) In this latter lineage, the PRE-1 family of SINEs was created by insertion of part of the gene for tRNA(Arg) into the 5' region of the CHRS-S family. The distribution of a particular family of SINEs among species of artiodactyls and cetaceans confirmed the most recent conclusion for paraphyly of the order Artiodactyla. The present study also revealed that a newly created tRNA(Glu)-derived family of SINEs was subjected both to recombination with different units and to duplication of an internal sequence within a SINE unit to generate, during evolution, a huge superfamily of tRNA(Glu)-related families of SINEs that are now found in the genomes of artiodactyls and cetaceans.  相似文献   

13.
14.
Brassica oleracea and Arabidopsis thaliana belong to the Brassicaceae(Cruciferae) family and diverged 16 to 19 million years ago. Although the genome size of B. oleracea (approximately 600 million base pairs) is more than four times that of A. thaliana (approximately 130 million base pairs), their gene content is believed to be very similar with more than 85% sequence identity in the coding region. Therefore, this important difference in genome size is likely to reflect a different rate of non-coding DNA accumulation. Transposable elements (TEs) constitute a major fraction of non-coding DNA in plant species. A different rate in TE accumulation between two closely related species can result in significant genome size variations in a short evolutionary period. Short interspersed elements (SINEs) are non-autonomous retroposons that have invaded the genome of most eukaryote species. Several SINE families are present in B. oleracea and A. thaliana and we found that two of them (called RathE1 and RathE2) are present in both species. In this study, the tempo of evolution of RathE1 and RathE2 SINE families in both species was compared. We observed that most B. oleracea RathE2 SINEs are "young" (close to the consensus sequence) and abundant while elements from this family are more degenerated and much less abundant in A. thaliana. However, the situation is different for the RathE1 SINE family for which the youngest elements are found in A. thaliana. Surprisingly, no SINE was found to occupy the same (orthologous) genomic locus in both species suggesting that either these SINE families were not amplified at a significant rate in the common ancestor of the two species or that older elements were lost and only the recent (lineage-specific) insertions remain. To test this latter hypothesis, loci containing a recently inserted SINE in the A. thaliana col-0 ecotype were selected and characterized in several other A. thaliana ecotypes. In addition to the expected SINE containing allele and the pre-integrative allele (i.e. the "empty" allele), we observed in the different ecotypes, alleles with truncated portions of the SINE (up to the complete loss of the element) and of the immediate genomic flanking sequences. The absence of SINEs in orthologous positions between B. oleracea and A. thaliana and the presence in recently diverged A. thaliana ecotypes of alleles containing severely truncated SINEs suggest a very high rate of SINE loss in these species.  相似文献   

15.
Genomic DNA libraries were prepared from two endemic species of Lake Victoria haplochromine (cichlid) fish and used to isolate and characterize a set of short interspersed elements (SINEs). The distribution and sequences of the SINEs were used to infer phylogenetic relationships among East African haplochromines. The SINE-based classification divides the fish into four groups, which, in order of their divergence from a stem lineage, are the endemic Lake Tanganyika flock (group 1); fish of the nonendemic, monotypic, widely distributed genus Astatoreochromis (group 2); the endemic Lake Malawi flock (group 3); and group 4, which contains fish from widely dispersed East African localities including Lakes Victoria, Edward, George, Albert, and Rukwa, as well as many rivers. The group 4 haplochromines are characterized by a subset of polymorphic SINEs, each of which is present in some individuals and absent in others of the same population at a given locality, the same morphologically defined species, and the same mtDNA-defined haplogroup. SINE-defined group 4 contains six of the seven previously described mtDNA haplogroups. One of the polymorphic SINEs appears to be fixed in the endemic Lake Victoria flock; four others display the presence-or-absence polymorphism within the species of this flock. These findings have implications for the origin of Lake Victoria cichlids and for their founding population sizes.  相似文献   

16.
Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3' end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.  相似文献   

17.
Short interspersed elements (SINEs) are a class of dispersed mobile sequences that use RNA as an intermediate in an amplification process called retroposition. The presence-absence of a SINE at a given locus has been used as a meaningful classification criterion to evaluate phylogenetic relations among species. We review here recent developments in the characterisation of plant SINEs and their use as molecular makers to retrace phylogenetic relations among wild and cultivated Oryza and Brassica species. In Brassicaceae, further use of SINE markers is limited by our partial knowledge of endogenous SINE families (their origin and evolution histories) and by the absence of a clear classification. To solve this problem, phylogenetic relations among all known Brassicaceae SINEs were analyzed and a new classification, grouping SINEs in 15 different families, is proposed. The relative age and size of each Brassicaceae SINE family was evaluated and new phylogenetically supported subfamilies were described. We also present evidence suggesting that new potentially active SINEs recently emerged in Brassica oleracea from the shuffling of preexisting SINE portions. Finally, the comparative evolution history of SINE families present in Arabidopsis thaliana and Brassica oleracea revealed that SINEs were in general more active in the Brassica lineage. The importance of these new data for the use of Brassicaceae SINEs as molecular markers in future applications is discussed.  相似文献   

18.
19.
Short interspersed nuclear elements (SINEs) are highly abundant non‐autonomous retrotransposons that are widespread in plants. They are short in size, non‐coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem‐like duplications and transduction of adjacent sequence regions.  相似文献   

20.
Short interspersed nuclear elements (SINEs) provide a near homoplasy free and copious source of molecular evolutionary markers with precisely defined character polarity. Used as molecular cladistic markers in presence/absence analyses, they represent a powerful complement to phylogenetic reconstructions that are based on sequence comparisons on the level of nucleotide substitutions. Recent sequence comparisons of large data sets incorporating a broad eutherian taxonomic sample have led to considerations of the different primate infraorders to constitute a paraphyletic group. Statistically significant support against the monophyly of primates has been obtained by clustering the flying lemur-also termed colugo-(Cynocephalus, Dermoptera) amidst the primates as the sister group to anthropoid primates (New World monkeys, Old World monkeys, and hominoids). We discovered retrotransposed markers that clearly favor the monophyly of primates, with the markers specific to all extant primates but definitively absent at the orthologous loci in the flying lemur and other non-primates. By screening the colugo genome for phylogenetic informative SINEs, we also recovered a novel family of dermopteran specific SINE elements that we call CYN. This element is probably derived from the isoleucine tRNA and appears in monomeric, dimeric, and trimeric forms. It has no long tRNA unrelated region and no poly(A) linker between the monomeric subunits. The characteristics of the novel CYN-SINE family indicate a relatively recent history. Therefore, this SINE family is not suitable to solve the phylogenetic affiliation between dermopterans and primates. Nevertheless it is a valuable device to reconstruct the evolutionary steps from a functional tRNA to an interspersed SINE element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号