首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effects of thyroidectomy and thyroxine (T4) replacement on the release of luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH) in ovariectomized (Ovx) rats were studied. Immediately after ovariectomy, rats were thyroidectomized (Tx) or sham-Tx. The Ovx-Tx rats were injected subcutaneously with either saline or T4 (2 micrograms/100 g body weight) daily for 30 days before sacrifice. Sham-Tx rats were treated with saline only. Twenty hours after the last injection, the blood sample was obtained by decapitation. The excised anterior pituitary gland (AP) was bisected and incubated in vitro with or without 0.1, 0.5, 2.5, and 50 ng GnRH at 37 degrees C for 4 h. The mediobasal hypothalamus (MBH) was bisected and incubated with or without the AP of Ovx donor rat in vitro. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. LH in the serum of Tx rats was higher than that in the serum of sham-Tx and Tx-T4 rats. Thyroidectomy resulted in an increase of LH release by Ovx rat AP, stimulated with or without 0.1 and 50 ng GnRH, as well as in an increase of immunoreactive GnRH release from MBH of Ovx rats in vitro. After a 4-hour incubation with donor APs, the LH in the medium containing MBH obtained from Tx rats was significantly higher than that obtained from sham-Tx and Tx-T4 rats. LH concentrations, in both sera and media, as well as GnRH concentration in the media of euthyroid and T4-replaced Tx groups were nonsignificantly different. These results suggest that T4 is inhibitory to the basal and GnRH-stimulated LH release as well as to the release of GnRH in the absence of ovarian hormones.  相似文献   

2.
P H Li 《Life sciences》1987,41(22):2493-2501
The effect of cortisol or adrenocorticotropic hormone (ACTH) on basal and gonadotropin-releasing hormone (GnRH)-induced secretion of luteinizing hormone (LH) was studied in vitro using dispersed pig pituitary cells. Pig pituitary cells were dispersed with collagenase and DNAase and then grown in McCoy's 5a medium containing 10% dextran charcoal-pretreated horse serum and 2.5% fetal calf serum for 3 days. Cells were preincubated with cortisol or ACTH before GnRH was added. When pituitary cells were incubated with 400 micrograms cortisol/ml medium for 6 h or longer, increase basal secretion of LH was observed. However, GnRH-induced LH release was reduced by cortisol. The degree of this reduction was dependent on cortisol, and a concentration of cortisol higher than 100 micrograms/ml was needed. Cortisol also inhibited the 17 beta-estradiol-induced increase in GnRH response. ACTH-(1-24), ACTH-(1-39), or porcine ACTH had no influence on GnRH-induced LH secretion. Our results show that cortisol can act directly on pig pituitary to inhibit both normal and estradiol-sensitized LH responsiveness to GnRH.  相似文献   

3.
The effects of a thyroidectomy and thyroxine (T4) replacement on the spontaneous and human chorionic gonadotropin (hCG)-stimulated secretion of testosterone and the production of adenosine 3',5'-cyclic monophosphate (cAMP) in rat testes were studied. Thyroidectomy decreased the basal levels of plasma luteinizing hormone (LH) and testosterone, which delayed the maximal response of testosterone to gonadotropin-releasing hormone (GnRH) and hCG in male rats. T4 replacement in thyroparathyroidectomized (Tx) rats restored the concentrations of plasma LH and testosterone to euthyroid levels. Thyroidectomy decreased the basal release of hypothalamic GnRH, pituitary LH, and testicular testosterone as well as the LH response to GnRH and testosterone response to hCG in vitro. T4 replacement in Tx rats restored the in vitro release of GnRH, GnRH-stimulated LH release as well as hCG-stimulated testosterone release. Administration of T4 in vitro restored the release of testosterone by rat testicular interstitial cells (TICs). The increase of testosterone release in response to forskolin and androstenedione was less in TICs from Tx rats than in that from sham Tx rats. Administration of nifedipine in vitro resulted in a decrease of testosterone release by TICs from sham Tx but not from Tx rats. The basal level of cAMP in TICs was decreased by thyroidectomy. The increased accumulation of cAMP in TICs following administration of forskolin was eliminated in Tx rats. T4 replacement in Tx restored the testosterone response to forskolin. But the testosterone response to androstenedione and the cAMP response to forskolin in TICs was not restored by T4 in Tx rats. These results suggest that the inhibitory effect of a thyroidectomy on the production of testosterone in rat TICs is in part due to: 1) the decreased basal secretion of pituitary LH and its response to GnRH; 2) the decreased response of TICs to gonadotropin; and 3) the diminished production of cAMP, influx of calcium, and activity of 17beta-HSD. T4 may enhance testosterone production by acting directly at the testicular interstitial cells of Tx rats.  相似文献   

4.
The effects of the antiprogestins (APs) ZK 98.299, ZK 98.734 and RU 486 on GnRH-stimulated LH secretion and their antagonistic activity on progesterone (P) actions were investigated in cultured pituitary cells from adult female Wistar rats. P (100 nM) was able to exert a facilitatory effect on GnRH (1 nM)-induced LH secretion after short-term (4 h) treatment of estradiol-primed (1 nM, 48 h) rat pituitary cells. When the APs (10 pM-10 microM) were introduced during the 4 h incubation period with P the facilitatory effect of P was totally abolished at concentrations greater than 10 nM (ZK 98.299, ZK 98.734) and greater than 1 nM (RU 486). Also the APs were shown to block the inhibitory action of P which occurs after long-term incubation of pituitary cells with this steroid. However at concentrations greater than 10 nM (ZK 98.734, RU 486) and greater than 100 nM (ZK 98.299) this antagonistic action of the APs was lost. To evaluate whether the APs have direct effects on GnRH-induced LH secretion in the absence of exogenous P pituitary cells cultivated for 48 h with or without 1 nM estradiol were incubated for 4 or 24 h with increasing concentrations of the APs (10 pM-10 microM). Four hour treatment of non-estradiol-primed cells with ZK 98.299 or ZK 98.734 was without any effect on the LH response to a 1 nM GnRH-stimulus. Only the highest concentration of RU 486 (10 microM) reduced the LH response. Twenty-four hour treatment of the cultures with the APs led to enhancement of GnRH-stimulated LH secretion by up to 113, 37 and 33% for ZK 98.734, ZK 98.299 and RU 486, respectively. When estradiol-primed cells were used for the same experiments we observed exclusively inhibitory effects on GnRH-induced LH secretion after 4 and 24 h treatment periods. It is concluded that these new APs are potent inhibitors of P-actions, but also per se they induce diverse effects on GnRH-stimulated LH secretion in cultured rat pituitary cells which have to be taken into account.  相似文献   

5.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

6.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

7.
The aim of the present study was to evaluate the possible direct effects of GnRH, oxytocin (OT) and vasoactive intestinal peptide (VIP) on the release of LH and PRL by dispersed porcine anterior pituitary cells. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) one month before slaughter. Gilts randomly assigned to one of the four groups were treated: in Group 1 (n = 8) with 1 ml/100 kg b.w. corn oil (placebo); in Group 2 (n = 8) and Group 3 (n = 8) with estradiol benzoate (EB) at the dose 2.5 mg/100 kg b.w., respectively, 30-36 h and 60-66 h before slaughter; and in Group 4 (n = 9) with progesterone (P4) at the dose 120 mg/ 100 kg b.w. for five consecutive days before slaughter. In gilts of Group 2 and Group 3 treatments with EB have induced the negative and positive feedback in LH secretion, respectively. Isolated anterior pituitary cells (10(6)/well) were cultured in McCoy's 5a medium with horse serum and fetal calf serum for 3 days at 37 degrees C under the atmosphere of 95% air and 5% CO2. Subsequently, the culture plates were rinsed with fresh McCoy's 5A medium and the cells were incubated for 3.5 h at 37 degrees C in the same medium containing one of the following agents: GnRH (100 ng/ml), OT (10-1000 nM) or VIP (1-100 nM). The addition of GnRH to cultured pituitary cells resulted in marked increases in LH release (p < 0.001) in all experimental groups. In the presence of OT and VIP we noted significant increases (p < 0.001) in LH secretion by pituitary cells derived from gilts representing the positive feedback phase (Group 3). In contrast, OT and VIP were without any effect on LH release in Group 1 (placebo) and Group 2 (the negative feedback). Pituitary cells obtained from OVX gilts primed with P4 produced significantly higher amounts (p < 0.001) of LH only after an addition of 100 nM OT. Neuropeptide GnRH did not affect PRL secretion by pituitary cells obtained from gilts of all experimental groups. Oxytocin also failed to alter PRL secretion in Group 1 and Group 2. However, pituitary cells from animals primed with EB 60-66 h before slaughter and P4 produced markedly increased amounts of PRL in the presence of OT. Neuropeptide VIP stimulated PRL release from pituitary cells of OVX gilts primed with EB (Groups 2 and 3) or P4. In contrast, in OVX gilts primed with placebo, VIP was without any effect on PRL secretion. In conclusion, the results of our in vitro studies confirmed the stimulatory effect of GnRH on LH secretion by porcine pituitary cells and also suggest a participation of OT and VIP in modulation of LH and PRL secretion at the pituitary level in a way dependent on hormonal status of animals.  相似文献   

8.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

10.
We investigated the mechanism of estradiol-17beta (E2) action on stimulation of LH (=gonadotropin II) release in the black porgy fish (Acanthopagrus schlegeli Bleeker) using an in vivo approach and primary cultures of dispersed pituitary cells in vitro. In vivo, E2 but not androgens (testosterone [T] and 11-ketotestosterone [11-KT]) significantly stimulated plasma LH in a dose-dependent manner. Estradiol-17beta also increased brain content of seabream GnRH. GnRH antagonist prevented E2 stimulation of LH release in vivo, indicating that the effect of E2 on LH was mediated by GnRH. In vitro, sex steroids (E2, T, 11-KT) alone had no effect on basal LH release in the cultured pituitary cells, but GnRH significantly stimulated LH release. Estradiol-17beta potentiated GnRH stimulation of LH release, an effect that was inhibited by GnRH antagonist, and 11-KT, but not T, also potentiated GnRH stimulation of LH release. The potentiating effect of 11-KT on GnRH-induced LH release in vitro was stronger than that of E2. These data suggest that E2 triggers LH release in vivo by acting both on GnRH production at the hypothalamus and on GnRH action at the pituitary. In contrast, 11-KT may only stimulate GnRH action at the pituitary. The E2) induction of LH release, through multiple interactions with GnRH control, supports a possible central role of E2in the sex change observed in the protandrous black porgy.  相似文献   

11.
Ginsenoside-Rb1 is one of the pharmacologically active components of ginseng, the dry root of Panax ginseng C. A. Meyer (Araliaceae), a well-known traditional Chinese medicine. Ginseng enhanced mounting behaviour of male rats and increased sperm counts in rabbit testes. Some experimental results suggested no sex hormone-like function in ginseng but probably gonadotropin-like action. The present study was to explore the effect of ginsenoside-Rb1 on the secretion of luteinizing hormone (LH) both in vivo and in vitro. Male rats were orchidectomized (Orch) for 2 weeks or subjected to swim training for 1 week before catheterization via the right jugular vein. They were intravenously injected with ginsenoside-Rb1 (10 microg/kg) or saline at 15 min prior to a challenge of gonadotropin-releasing hormone (GnRH) or 10 min-swim. Blood samples were collected at several time intervals following intravenous injection of ginsenoside-Rb1. In the in vitro experiment, male rats were decapitated and their anterior pituitary gland (APs) were either bisceted or enzymatically dispersed. The hemi-APs were preincubated with Locke's medium at 37 degrees C for 90 min and then incubated with Locke's medium containing ginsenoside-Rb1 (10(-7) - 10(-4) M) for 30 min. The dispersed AP cells (1 x 1(5) cells per well) were primed with dihydrotestosterone (DHT, 10(-8) M) for 3 days, and then challenged with ginsenoside-Rbl (10(-6) and 10(-5) M, n = 8) for 3 h. The concentrations of LH or testosterone in samples were measured by radioimmunoassays. Administration of ginsenoside-Rb1 did not alter the levels of plasma LH in both intact and Orch rats but significantly increased plasma LH concentration at the termination of the 10 min swimming exercise. Administration of ginsenoside-Rb1 resulted in a lower testosterone response to GnRH challenge or swimming exercise as compared with saline-treated rats. Ginsenoside-Rb1 dose-dependently increased the release of LH from both hemi-AP tissues and the DHT-primed dispersed AP cells in vitro. These results suggest that ginsenoside-Rb1 increases LH secretion by acting directly on rat AP cells.  相似文献   

12.
M E Apfelbaum 《Life sciences》1987,41(17):2069-2076
The effect of serotonin (5-HT) on the basal and gonadotrophin-releasing hormone (GnRH)-stimulated release of luteinizing hormone (LH) was studied in rat adenohypophysis in vitro. Anterior pituitary glands from ovariectomized rats were incubated for 1h in the presence of different doses of 5-HT (0.01 to 3 mumol/l). Serotonin added to the culture medium slightly dimished the basal release of LH and markedly inhibited the release of LH induced by GnRH. Responsiveness to GnRH (3 nmol/l) was significantly reduced, in a dose-dependent manner, by the simultaneous treatment of glands with 5-HT. Maximal inhibition to 65% of the response obtained with GnRH alone, was attained with 1 mumol/l 5-HT. The EC50 value was estimated to be about 1.9 X 10(-7) M. The inhibitory effect of 5-HT was evident within 30 min of incubation. Furthermore, 5-HT appear to exert a short-lasting action, since the rate of basal and GnRH-induced release of LH was reduced during the first hour of incubation, but after 2h the suppressive effects of 5-HT were no longer apparent. Methysergide, a serotonin receptor blocking agent, partially antagonized the inhibitory effect of 5-HT on LH release, either basal or GnRH-stimulated. This suggests that a receptor-mediated component may be involved in the mechanism of 5-HT action. The present results indicate that 5-HT can affect the release of LH by acting directly at the pituitary gland level.  相似文献   

13.
In an attempt to study the site and mechanism of action of estrogen in producing positive feedback control, porcine anterior pituitary slices were incubated in vitro in the presence of estradiol benzoate (EB). EB elevated pituitary cyclic AMP concentration within 5 min and augmented pituitary release of luteinizing hormone (LH). The magnitude of increase of cyclic AMP and LH release was related to the doses of EB used. Also, luteinizing hormone releasing hormone (LH-RH) elevated pituitary cyclic AMP concentration and stimulated pituitary release of LH. The magnitude of increase of cyclic AMP and LH release was inversely related to the doses of LH-RH used. EB and LH-RH were additive in increasing cyclic AMP. Progesterone and clomiphene citrate interfered with an increase of pituitary cyclic AMP produced by EB, but did not significantly affect the basal level of pituitary cyclic AMP. Testosterone propionate, human chorionic gonadotropin and hexestrol were without effect on either basal or stimulated level of pituitary cyclic AMP. Since cyclic AMP and dibutyryl cyclic AMP (DBC) stimulated LH release, it is suggested that EB directly stimulates the release of LH by augmenting cyclic AMP synthesis in the anterior pituitary.  相似文献   

14.
This study investigated the direct effect of catecholamines, epinephrine (EPI), and norepinephrine (NE) on basal and gonadotropin-releasing hormone (GnRH)-stimulated secretion of luteinizing hormone (LH) from dispersed pig pituitary cells in vitro. Pig pituitaries were dispersed into cells with collagenase and DNAase and then cultured in McCoy's 5a medium containing horse serum (10%) and fetal calf serum (2.5%) pretreated with dextran-coated charcoal for 3 days. EPI and NE did not affect basal LH secretion after 4 h of incubation. When pituitary cells were incubated with EPI or NE (1 microgram/ml) for longer than 30 min, GnRH-stimulated LH secretion was reduced. The degree of this reduction was dependent on EPI and NE, and a concentration of EPI and NE higher than 1 ng/ml and 100 ng/ml, respectively, was needed. L-isoproterenol, a nonselective beta-agonist, also inhibited the LH response to GnRH. Propranolol, a beta-antagonist, blocked the inhibitory effect of EPI, whereas phentolamine, an alpha-antagonist, had no effect. These results suggest that catecholamines, acting by a beta 2-adrenergic receptor, may play a role in the control of the porcine pituitary gonadotrope's response to GnRH.  相似文献   

15.
The direct effects of alpha- and beta-adrenergic agents on luteinizing hormone (LH) secretion in vitro by porcine pituitary cells and the participation of secondary messengers, adenosine 3'5'-monophosphate (cAMP) and guanosine 3'5'-monophospate (cGMP), in transduction of signals induced by adrenergic agents and gonadotropin-releasing hormone (GnRH) in these cells have been investigated. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) 1 month before slaughter. OVX gilts, assigned to four groups, were primed with: (1) vehicle (OVX); (2 and 3) estradiol benzoate (EB; 2.5mg/100kg b.w.) at 30-36h (OVX+EB I) or 60-66h (OVX+EB II) before slaughter, respectively; (4) progesterone (P(4); 120mg/100kg b.w.) for 5 consecutive days before slaughter (OVX+P(4)). Anterior pituitaries were dispersed with trypsin and then pituitary cells were cultured (10(6) per well) in McCoy's 5a medium containing horse serum (10%) and fetal calf serum (2.5%) for 3 days, at 37 degrees C and under the atmosphere of 95% air and 5% CO(2). On day 4 of the culture, the cells were submitted to 3.5h incubation in the presence of GnRH (a positive control), alpha- and beta-adrenergic agonists (phenylephrine (PHEN) and isoproterenol (ISOP), respectively), and alpha- and beta-adrenergic blockers (phentolamine (PHENT) and propranolol (PROP), respectively). The culture media were assayed for LH (experiment I) and cyclic nucleotides (experiment II).In experiment I, addition of GnRH (100ng/ml) increased LH secretion by pituitary cells taken from gilts of all experimental groups. The effects of alpha- and beta-adrenergic agents on LH secretion by the cells depended on hormonal status of gilts. The LH secretion by pituitary cells of OVX gilts was potentiated in the presence of PHEN (10, 100nM, and 1microM) and PHENT (1microM), alone or in combination with PHEN (100nM) and by the cells derived from OVX+EB I and OVX+P(4) animals in response to PHEN (100nM) and ISOP (1microM). ISOP (1microM) also stimulated LH secretion by the cells taken from OVX+EB II gilts. In experiment II, GnRH (100ng/ml) increased cGMP production by pituitary cells obtained from all groups of gilts and cAMP secretion by the cells taken from OVX and OVX+P(4) animals. PHEN (100nM) decreased and PROP (1microM) enhanced cAMP production by pituitary cells derived from OVX+EB I and OVX gilts, respectively. Moreover, PHEN (100nM) reduced, while PHENT (1microM) stimulated the release of cGMP by pituitary cells taken from OVX+EB II animals. In turn, ISOP (100nM) decreased and increased cGMP production by the cells derived from OVX+EB II and OVX+P(4) gilts, respectively. PROP (1microM) potentiated cGMP accumulation by pituitary cells taken from OVX+EB I and OVX+P(4) animals.In conclusion, our results suggest that adrenergic agents can modulate LH release by porcine pituitary cells acting through guanyl and adenylyl cyclase and in a manner dependent on hormonal status of gilts.  相似文献   

16.
L V Swanson  S K McCarthy 《Steroids》1986,47(2-3):101-114
A significant dose-response relationship between gonadotropin-releasing hormone (GnRH) and time to luteinizing hormone (LH) peak, peak serum LH and total serum LH was obtained in prepubertal Holstein heifers (28 weeks of age) (Experiment 1). For the second experiment, the effect of steroid feedback on the anterior pituitary was determined. A steady infusion of saline, estradiol-17 beta or progesterone was maintained for 24 h while GnRH, in various schemes, was administered 8 h after the beginning of steroid infusion. Estradiol-17 beta infusion (2.08 micrograms/h), although it did not affect peripheral concentrations of estrogen, caused an LH release 24 to 30 h later in 37.5% of the heifers. This amount of exogenous estrogen did not affect the LH response to a single GnRH (4 micrograms) challenge. When the same GnRH dosage (4 micrograms) was administered 6 times at hourly intervals, the heifers infused with estradiol had a lower response after the first 2 injections of GnRH and a greater response after the last 4 injections than heifers infused with saline. When GnRH was infused (4 micrograms/h) for 6 h, beginning 8 h after steroid infusion, estradiol infusion caused a significantly higher peak LH and total LH release than an infusion of either saline or progesterone (7.3 micrograms/h). The progesterone infusion had no effect on the GnRH-stimulated LH release. We conclude that prepubertal dairy heifers have an anterior pituitary capable of responding to the feedback effect of estrogen in a positive manner.  相似文献   

17.
Both testosterone (T) and gonadotropin-releasing hormone (GnRH)-antagonist (GnRH-A) when given alone lower serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact and castrated rats. However, when graded doses of testosterone enanthate (T.E.) were given to GnRH-A-treated intact male rats, a paradoxical dose-dependent increase in serum FSH occurred; whereas serum LH remained suppressed. This surprising finding led us to ask whether the paradoxical increase in serum FSH in GnRH-A-suppressed animals was a direct stimulatory effect of T on the hypothalamic-pituitary axis or the result of a T effect on a testicular regulator of FSH. To test these hypotheses, we treated adult male castrated rats with GnRH-A and graded doses of T.E. In both intact and castrated rats, serum LH remained undetectable in GnRH-A-treated rats with or without T.E. However, addition of T.E. to GnRH-A led to a dose-dependent increase in serum FSH in castrated animals as well, thus pointing against mediation by a selective testicular regulator of FSH. These data provide evidence that pituitary LH and FSH responses may be differentially regulated under certain conditions. When the action of GnRH is blocked (such as in GnRH-A-treated animals), T directly and selectively increases pituitary FSH secretion.  相似文献   

18.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

19.
Ovariectomized rats that were 3–4, 12 or 22 months old were injected s.c. with 4 mg, of testosterone propionate and 3 days later were injected s.c. with 2.8 mg. progesterone or the oil vehicle. Blood samples were collected by heart puncture 5 hrs. later. Serum levels of LH and FSH decreased significantly as age increased. Progesterone significantly increased serum LH and FSH levels regardless of age. The increase in serum LH concentration attributed to progesterone was greatest in the young and least in the old rats. To determine if age effects were due to differences in pituitary response to GnRH, ovariectomized rats that were 2.5 to 23 months old were injected i.v. with GnRH at doses of 100 ng or 40 ng/100 g body weight or were primed with 25 mg progesterone and 50 μg estradiol-benzoate 3 days before an injection of 2 ng GnRH/100 g body weight. Blood was obtained by heart puncture before and 20 min. after GnRH. In each experiment serum LH levels significantly decreased with increasing age but were significantly elevated by GnRH. This increase in serum LH level in response to GnRH declined with increasing age. The data suggest that the elevation in serum LH level in response to GnRH declines as a result of aging in female rats and that this effect is independent of circulating ovarian steroid levels.  相似文献   

20.
Crossbred boars were (a) immunized against GnRH conjugated to human serum globulin (200 micrograms GnRH-hSG) in Freund's adjuvant at 12 weeks of age and boosted at weeks 18 and 20 (N = 10), (b) served as controls and received hSG only in adjuvant (N = 10), or castrated at weaning (N = 10). At 24 weeks of age (immediately before slaughter), the boars were challenged with saline or pig LH (1 microgram/10 kg body weight). After slaughter, fresh testicular fragments were incubated with pig LH (0.05 and 0.2 ng/2 ml medium) to assess the effects of immunization on Leydig cell function. Pituitary contents of LH and FSH, and testicular LH receptor content were also measured. The results indicated that plasma LH and testosterone concentrations, pituitary LH content, testicular LH receptor content, testis and sex accessory organ weights were significantly reduced in GnRH-immunized boars compared to hSG-adjuvant controls. However, plasma and pituitary FSH content were not affected by high antibody titres generated against GnRH. The testicular testosterone response to exogenous LH in vivo and in vitro was significantly reduced (P less than 0.05) in GnRH-immunized boars. These results indicate that active immunization against GnRH impairs pituitary and Leydig cell functions in boars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号