首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

2.
Succession is a fundamental concept in ecology because it indicates how species populations, communities, and ecosystems change over time on new substrate or after a disturbance. A mechanistic understanding of succession is needed to predict how ecosystems will respond to land-use change and to design effective ecosystem restoration strategies. Yet, despite a century of conceptual advances a comprehensive successional theory is lacking. Here we provide an overview of 19 successional theories (‘models’) and their key points, group them based on conceptual similarity, explain conceptual development in successional ideas and provide suggestions how to move forward. Four groups of models can be recognised. The first group (patch & plants) focuses on plants at the patch level and consists of three subgroups that originated in the early 20th century. One subgroup focuses on the processes (dispersal, establishment, and performance) that operate sequentially during succession. Another subgroup emphasises individualistic species responses during succession, and how this is driven by species traits. A last subgroup focuses on how vegetation structure and underlying demographic processes change during succession. A second group of models (ecosystems) provides a more holistic view of succession by considering the ecosystem, its biota, interactions, diversity, and ecosystem structure and processes. The third group (landscape) considers a larger spatial scale and includes the effect of the surrounding landscape matrix on succession as the distance to neighbouring vegetation patches determines the potential for seed dispersal, and the quality of the neighbouring patches determines the abundance and composition of seed sources and biotic dispersal vectors. A fourth group (socio-ecological systems) includes the human component by focusing on socio-ecological systems where management practices have long-lasting legacies on successional pathways and where regrowing vegetations deliver a range of ecosystem services to local and global stakeholders. The four groups of models differ in spatial scale (patch, landscape) or organisational level (plant species, ecosystem, socio-ecological system), increase in scale and scope, and reflect the increasingly broader perspective on succession over time. They coincide approximately with four periods that reflect the prevailing view of succession of that time, although all views still coexist. The four successional views are: succession of plants (from 1910 onwards) where succession was seen through the lens of species replacement; succession of communities and ecosystems (from 1965 onwards) when there was a more holistic view of succession; succession in landscapes (from 2000 onwards) when it was realised that the structure and composition of landscapes strongly impact successional pathways, and increased remote-sensing technology allowed for a better quantification of the landscape context; and succession with people (from 2015 onwards) when it was realised that people and societal drivers have strong effects on successional pathways, that ecosystem processes and services are important for human well-being, and that restoration is most successful when it is done by and for local people. Our review suggests that the hierarchical successional framework of Pickett is the best starting point to move forward as this framework already includes several factors, and because it is flexible, enabling application to different systems. The framework focuses mainly on species replacement and could be improved by focusing on succession occurring at different hierarchical scales (population, community, ecosystem, socio-ecological system), and by integrating it with more recent developments and other successional models: by considering different spatial scales (landscape, region), temporal scales (ecosystem processes occurring over centuries, and evolution), and by taking the effects of the surrounding landscape (landscape integrity and composition, the disperser community) and societal factors (previous and current land-use intensity) into account. Such a new, comprehensive framework could be tested using a combination of empirical research, experiments, process-based modelling and novel tools. Applying the framework to seres across broadscale environmental and disturbance gradients allows a better insight into what successional processes matter and under what conditions.  相似文献   

3.
Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.  相似文献   

4.
Land-use intensification is a major cause for the decline in species diversity in human-modified landscapes. The loss of functionally important species can reduce a variety of ecosystem functions, such as pollination and seed dispersal, but the intricate relationships between land-use intensity, biodiversity and ecosystem functioning are still contentious. Along a gradient from forest to intensively used farmland, we quantified bee species richness, visitation rates of bees and pollination success of wild cherry trees (Prunus avium). We analysed the effects of structural habitat diversity at a local scale and of the proportion of suitable habitat around each tree at a landscape scale. We compared these findings with those from previous studies of seed-dispersing birds and mammals in the same model system and along the same land-use gradient. Bee species richness and visitation rates were found to be highest in structurally simple habitats, whereas bird species richness—but not their visitation rates—were highest in structurally complex habitats. Mammal visitation rates were only influenced at the landscape scale. These results show that different functional groups of animals respond idiosyncratically to gradients in habitat and landscape structure. Despite strong effects on bees and birds, pollination success and bird seed removal did not differ along the land-use gradient at both spatial scales. These results suggest that mobile organisms, such as bees and birds, move over long distances in intensively used landscapes and thereby buffer pollination and seed-dispersal interactions. We conclude that measures of species richness and interaction frequencies are not sufficient on their own to understand the ultimate consequences of land-use intensification on ecosystem functioning.  相似文献   

5.
Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem services. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large‐scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and landscape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 112 studies on the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of second growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored. Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vulnerability to climate extremes is generally inversely related to long‐term exposure, which varies with historical climate and biogeography. The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases forests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire, potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs in these landscapes.  相似文献   

6.
《新西兰生态学杂志》2011,30(1):131-146
In most regions of the world removal of environmental stress facilitates regeneration of native plants and habitats. However, in many of New Zealands modified landscapes, exotic species are likely to respond first to any reduction in stress because these fast-growing species are prevalent in local vegetation and dominate seed banks. Given the trend in agriculture towards intensive management on larger units, the indigenous character in New Zealand landscapes is being marginalised and there is the risk that further reduction in visibility of native vegetation may be perpetuated by a growing familiarity and identification with ubiquitous exotic species. Alternative landscapes, based on an understanding of ecosystem processes, need to be explored if biodiversity goals set by international convention and national resource management law are to be achieved. This study provides a set of predictions and pathways, backed by field observations, to underpin a restoration strategy at patch to landscape scales. A forest model, LINKNZ, is employed to simulate species succession under New Zealand conditions. The incorporation of disturbance regimes and species dispersal processes in the model permits a wide range of scenarios to be investigated encompassing indigenous forest development, exotic species interactions with indigenous forest ecosystems, management of mixed introduced-indigenous forests, and landscape dynamics. The results illustrate an approach that identifies potential biosecurity threats and provides additional options for integrating nature and production in New Zealands rural and urban landscapes.  相似文献   

7.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

8.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

9.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

10.
Extreme disturbance events denote another aspect of global environmental changes archetypal of the Anthropocene. These events of climatic or anthropic origin are challenging our perceived understanding about how forests respond to disturbance. I present a general framework of tropical forest responses to extreme disturbance events with specific examples from tropical dry forests. The linkage between level of disturbance severity and dominant mechanism of vegetation recovery is reflected on a variety of initial trajectories of forest succession. Accordingly, more realistic and cost‐effective restoration goals in many tropical forests likely consist in maintaining a mosaic of different successional trajectories while promoting landscape connectivity, rather than encouraging full‐ecosystem recovery to pre‐disturbance conditions. Incorporating extreme disturbance events into the global restoration ecology agenda will be essential to design well‐informed ecosystem management strategies in the coming decades.  相似文献   

11.
Abstract. Vegetation samples from 15 successional seres in various disturbed habitats in the western part of the Czech Republic were analysed to detect possible trends. For particular seres, data on species cover were available from the onset to 10–76 yr of succession. All seres started on bare ground. Species which attained at least 1% cover in any sere in any year were used as input data for Canonical Correspondence Analysis, assessing the effect of time as the environmental variable, for Detrended Correspondence Analysis and TWINSPAN classification. Two distinct groups ofseres were distinguished: ‘ruderal’, occurring in agricultural, industrial or urban landscapes altered by men, usually on fertile sites; and ‘non‐ruderul’, occurring in less altered, mostly forested landscapes, usually on acid, nutrient‐poor and wetter soils. The former type of succession starts with ruderal annuals, being followed by ruderal perennials. In the latter case non‐ruderal clonal perennials prevail from the onset of succession. The landscape frame is emphasized, beside site environmental conditions, as influencing the type of succession. The character of species attaining dominance in succession, participation of dominant woody plants and the character of late successional stages, i.e. features important from the point of view of potential restoration of human‐disturbed habitats, are discussed.  相似文献   

12.
We describe forest landscape transformations during the last two millennia in the Italian peninsula by analyzing local (Rieti basin – Lago Lungo) and regional (RF93-30 Adriatic Sea) sediment cores. We identify a dynamic forest ecosystem through paleoecologic reconstruction and consider potential interventions for effective restoration of the most ancient, least disturbed forest ecosystem. The most degraded ecosystems in consequence of human activities were hygrophilous (wet) and mesic forests. In the Rieti Basin, degraded forest ecosystems on mountain slopes are undergoing some degree of forest succession and have less need of restoration. However, management plans for biodiversity, ecosystem services and resources conservation are needed to achieve more sustainable development. In Rieti, the paleoecological investigation revealed a dramatic decrease of deciduous wet and mesic tree taxa through time due to human landscape transformation. The starting point for restoration of a Mediterranean forest ecosystem that preserves natural biodiversity and associated ecosystem services requires recreating some portion of the floodplain wetland ecological niche. Once floodplain forest ecological niche has been recreated, the original ecosystem composed of Alnus, Fraxinus excelsior, Tilia spp., Carpinus betulus and Acer spp., all species which today are rare, should be planted on the basis of microsite characteristics and tree autoecology.  相似文献   

13.
庐山森林景观格局变化的长期动态模拟   总被引:1,自引:0,他引:1  
梁艳艳  周年兴  谢慧玮  蒋铭萍 《生态学报》2013,33(24):7807-7818
在以植被格局为基础的森林景观动态分析中,可通过森林演替推断景观格局的动态变化以及相应的景观生态过程。运用空间直观景观模型LANDIS,以庐山风景区为案例地,模拟森林植被在未来300 a的自然演替动态,在此基础上选取斑块面积比、聚集度、分维数、多样性指数和均匀度指数等景观格局指数,分析森林景观格局随森林演替的动态变化。结果表明:(1)阔叶林树种的绝对优势地位保证其斑块面积比呈现持续增长的稳定趋势,森林植被将朝着地带性常绿阔叶林方向演替;(2)景观聚集度特征方面,阔叶林树种在前150 a缓慢增长,而后150 a保持相对稳定,杉木林一直保持平稳,毛竹林在整个模拟阶段一直在不断下降直至演替结束;(3)各优势树种植被斑块的分维数都保持在1-1.1之间,说明各景观斑块的边缘相对较规则且变化较小;(4)景观多样性指数呈现出先上升后缓慢下降的趋势,而均匀度指数则呈现出先下降后上升再缓慢下降的变化态势。景观格局指数的变化特征与植被向顶极群落演替的趋势相吻合,该模拟结果可运用到庐山森林景观的管理实践中。从长远来看,应该继续实行严格的封山育林政策。  相似文献   

14.
Land-use intensification in Mediterranean agro-forest systems became a pressure on biodiversity, concerning particularly the woodland sensitive species. In 2001, the effects of a land-use gradient from old-growth cork-oak forest to a homogeneous agricultural area were assessed using rove beetles as indicators in a Mediterranean landscape. The aim was to find which species were negatively affected by land-use intensification at the landscape level and whether they benefited from cork-oak patches occurring along the land-use gradient. A total of 3,196 rove beetles from 88 taxa were sampled from all landscape types. Agricultural area recorded significantly higher numbers of abundance and species richness in relation to the cork-oak mosaics, i.e. the old-growth forest and the managed agro-forest landscapes (montados). Moreover, 70% of rove beetle indicator species common enough to be tested by IndVal displayed their highest indicator value for agriculture, showing a lower number of woodland indicators in comparison to ground beetles. Nevertheless, one rove beetle taxon was considered a specialist of closed woodland mosaics while no specialist ground beetle was found for that landscape typology. Some rare rove beetle species were also important in typifying diversity patterns of old-growth cork-oak forests. Hence, future management in Mediterranean landscapes should take into account not only indicator species common enough to be tested by IndVal, but also rare and endemic species. Considering the added value of cork-oak woodland cover for sensitive rove and ground beetle diversity, the strengthening of cork-oak woodland connectivity seems to be a crucial management that is required in agricultural Mediterranean landscapes.  相似文献   

15.
The mechanisms affecting forest regeneration in human-modified landscapes are attracting increasing attention as tropical forests have been recognized as key habitats for biodiversity conservation, provision of ecosystem services, and human well-being. Here we investigate the effect of the leaf-cutting ants (LCA) Atta opaciceps on regenerating plant assemblages in Caatinga dry forest. Our study encompassed 15 Atta opaciceps colonies located in landscape patches with a gradient of forest cover from 8.7% to 87.8%, where we monitored regenerating individuals (seedlings and saplings of woody and herbaceous plants) in different habitats (nests, foraging areas, and control areas) over one year. We recorded 2,977 regenerating plant individuals, distributed among 55 species from 23 families. Herbaceous plants represented 82.1% and 58.2% of the total number of individuals and species, respectively. Species richness of both the whole and herbaceous plant assemblages increased along the forest cover gradient, but without difference between the habitats. Total plant abundance was highest in control areas followed by foraging areas and nests and this pattern held for both woody and herbaceous plants. Although forest cover did not influence the abundance of herbaceous plants and the whole plant assemblage, it positively affects woody plant abundance across control areas. Forest cover and habitat changed species composition of both the entire regenerating and the herbaceous assemblages. These results together indicate that LCA negatively impact regenerating plant assemblages, particularly in those sites with increased forest cover. As LCA proliferate in human-modified landscapes, they may prevent plant regeneration of disturbed areas.  相似文献   

16.
At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical “land management” practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species’ habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species.  相似文献   

17.
The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities.  相似文献   

18.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context.  相似文献   

19.
We propose that nonharvest plantations could provide important opportunities for restoration of indigenous forest cover and related ecosystem services. We assessed the relative performance of three Podocarpaceae (podocarps) species planted into a degraded Ponderosa Pine (Pinus ponderosa) plantation, central North Island, New Zealand. We hypothesised that the degraded pine plantation overstorey could provide suitable conditions for the development of a podocarp‐dominated forest structure within ca. 50 years of underplanting and that podocarp growth would differ depending on the species suitability to the site. Rimu (Dacrydium cupressinum) significantly outperformed both Totara (Podocarpus totara) and Kahikatea (Dacrycarpus dacrydioides) in height and diameter growth. Rimu was now the structurally dominant tree where it occurred rather than pine. Per annum scaled carbon storage within Rimu stands was significantly greater than the Totara, Kahikatea or Pine stands. All podocarp species had attained a greater stand density compared to the pine overstorey. Possible reasons for the differing podocarp growth performance include different light requirements, response to soil nutrients, elevational distributions and frost susceptibility. There were significant differences in understorey species richness among the different stands of podocarp species. Underplanting accelerated successional development by incorporating late‐successional indigenous canopy dominants within the forest succession and overcame limitations imposed on forest succession at the site from its isolation from indigenous forest tree seed sources.  相似文献   

20.
Human land-use changes are particularly extensive in tropical regions, representing one of the greatest threats to terrestrial biodiversity and a key research topic in conservation. However, studies considering the effects of different types of anthropogenic disturbance on the functional dimension of biodiversity in human-modified landscapes are rare. Here, we obtained data through an extensive review of peer-reviewed articles and compared 30 Neotropical bat assemblages in well-preserved primary forest and four different human-disturbed habitats in terms of their functional and taxonomic diversity. We found that disturbed habitats that are structurally less similar to primary forest (pasture, cropland, and early-stage secondary forest) were characterized by a lower functional and taxonomic diversity, as well as community-level functional uniqueness. These habitats generally retained fewer species that perform different ecological functions compared to higher-quality landscape matrices, such as agroforestry. According to functional trait composition, different bat ensembles respond differently to landscape change, negatively affecting mainly gleaning insectivorous bats in pasture, narrow-range species in cropland, and heavier animalivorous bats in secondary forest. Although our results highlight the importance of higher-quality matrix habitats to support elevated functional and taxonomic bat diversity, the conservation of bat species that perform different ecological functions in the mosaic of human-modified habitats also depends on the irreplaceable conservation value of well-preserved primary forests. Our study based on a pooled analysis of individual studies provides novel insights into the effects of different human-modified habitats on Neotropical bat assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号