首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the effect of the addition of biosolids combined with a native mycorrhizal inoculum (Arbuscular Mycorrhizal Fungi [AMF]) on growth of a native Australian grass, and on trace element stabilization of sulphidic gold mine tailings. A glasshouse trial was established on four substrates: tailings (T); tailings with a layer of 5 cm topsoil (TS); tailings amended with 100 dry t ha?1 biosolids (LB), and tailings amended with 500 dry t ha?1 biosolids (HB). Pots of 1.2 L of capacity were established; some were inoculated with a mixture of Glomus sp. (WUM51–9227), Scutelospora aurigloba (WUM51–53), and Acaulospora levis (WUM46) culture mix, and others were uninoculated controls. Seeds of the native Australian grass, Bothriochloa macra were sown in the pots. Root infection, plant biomass production, nutrients and trace element concentrations in shoots were investigated. Addition of biosolids significantly increased AMF infection of roots compared to unamended substrates. No clear qualitative differences in colonization were detected. Addition of biosolids and AMF together clearly improved the establishment and growth of the native grass. Similar trends in nutritional status were shown for biosolids and inoculation with AMF treatments. Mycorrhizal inoculation increased plant biomass production and the effectiveness of nutrient uptake. The combined use of biosolids and mycorrhizal inoculation could be a reliable method for phytostabilization purposes in polluted substrates.  相似文献   

2.
A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.  相似文献   

3.
Abstract

Mining activities have left a legacy of metals containing tailings impoundments. After mine closure, reclamation of mine wastes can be achieved by restoration of a vegetation cover. This study investigated the impact of biochar (BC), biosolids (BS), humic substances (HS), and mycorrhizal fungi (MF) for improving mine tailings fertility and hydraulic properties, supporting plant establishment, tailings revegetation, and enabling growth of energy crops. We conducted a pot trial by growing willow, poplar, and miscanthus in Pb/Zn/Cu mine tailings untreated or amended with two rates of amendments (low or high input). Biosolids resulted in the most significant changes in tailings properties, neutralizing pH and increasing organic carbon, nutrient concentrations, cation exchange capacity, water retention, and saturated hydraulic conductivity. The greatest increase in energy crops production was also observed in BS treatments enabling the financial viability of mine reclamation. Although BC resulted in significant improvements in tailings fertility and hydraulic properties, its impact on biomass was less pronounced, most likely due to lower N and P available concentrations. Increases in willow and miscanthus biomass were observed in HS and MF treatments in spite of their lower nutrient content. A pot experiment is underway to assess synergistic effects of combining BS with BC, HS, or MF.  相似文献   

4.
Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.  相似文献   

5.
Revegetation of mine tailings usually requires amendments of phosphorus. However, phosphate addition can mobilize arsenic (As) from the tailings. A 5-mo lysimeter field trial was conducted to quantify As mobilization in gold mine tailings, in association with different P amendment products and different plant species (barley Hordeum vulgare, blue lupin Lupinus angustifolius, rye corn Secale cereale) necessary for short-term revegetation of mine tailings. A simultaneous laboratory experiment was run to examine As mobilization in 1-cm-deep tailings in relation to different P amendment rates. The experimental results showed that the amount of As leached was proportional to the amount of P added. In the larger scale lysimeters, P amendment of < 3 g m(-2) caused As leaching of 0.5 mg L(-1) from unplanted lysimeters and up to 0.9 mg L(-1) on average in planted lysimeters. Variable species-amendment combinations produced differences in the amount of As leached and uptaken. Leachates and uptakes were higher with an organic fertilizer amendment than Superphosphate, particularly in combination with barley. Arsenic accumulated in plant biomass to 126 mg kg(-1) in shoots and 469 mg kg(-1) in roots.  相似文献   

6.
The Rakha Cu mines are located at East Singhbhum, Jharkhand, India and their activities ceased in 2001. The tailings (residue) were permanently stored in tailings ponds that require vegetation to reduce their impact on the environment. A pot scale study was conducted to evaluate the suitability of Cymbopogon citratus (DC.) Ex Nees and Vetiveria zizanioides (L.) Nash for the reclamation of Cu tailings and to evaluate the effects of chicken manure and soil-manure mixtures on the revegetation of such tailings. Application of manure and soil-manure mixtures resulted in significant increase in pH, EC, OC, CEC and nutritional status of Cu tailings. The environmentally available and DTPA extractable Cu and Ni concentration reduced in amended tailings, while Mn and Zn content increased significantly. Plants grown on amended tailings accumulated lesser Cu and Ni but higher Mn and Zn. Plant biomass increased proportionally to manure and soil-manure mixtures application rates. Lemon grass produced more biomass than vetiver grass in either of the amended tailings. From the pot experiment, it can be suggested that application of chicken manure @ 5% (w/w) and in combination with lemon grass, could be a viable option for reclamation (phytostabilization) of toxic tailings.  相似文献   

7.
The aim of this research was to identify wild plant species applicable for remediation of mine tailings in arid soils. Plants growing on two mine tailings were identified and evaluated for their potential use in phytoremediation based on the concentration of potentially toxic elements (PTEs) in roots and shoots, bioconcentration (BCF) and translocation factors (TF). Total, water-soluble and DTPA-extractable concentrations of Pb, Cd, Zn, Cu, Co and Ni in rhizospheric and bulk soil were determined. Twelve species can grow on mine tailings, accumulate PTEs concentrations above the commonly accepted phytotoxicity levels, and are suitable for establishing a vegetation cover on barren mine tailings in the Zimapan region. Pteridium sp. is suitable for Zn and Cd phytostabilization. Aster gymnocephalus is a potential phytoextractor for Zn, Cd, Pb and Cu; Gnaphalium sp. for Cu and Crotalaria pumila for Zn. The species play different roles according to the specific conditions where they are growing at one site behaving as a PTEs accumulator and at another as a stabilizer. For this reason and due to the lack of a unified approach for calculation and interpretation of bioaccumulation factors, only considering BCF and TF may be not practical in all cases.  相似文献   

8.
The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth.  相似文献   

9.
The relationship between compost amendment, plant biomass produced, and bacterial root colonization as measured by fluorescence in situ hybridization was examined following plant growth in mine tailings. Mine tailings can remain devoid of vegetation for decades after deposition due to a combination of factors that include heavy metal toxicity, low pH, poor substrate structure and water-holding capacity, and a severely impacted heterotrophic microbial community. Research has shown that plant establishment, a desired remedial objective to reduce eolian and water erosion of such tailings, is enhanced by organic matter amendment and is correlated with significant increases in rhizosphere populations of neutrophilic heterotrophic bacteria. Results show that for the acidic metalliferous tailings tested in this study, compost amendment was associated with significantly increased bacterial colonization of roots and increased production of plant biomass. In contrast, for a Vinton control soil, increased compost had no effect on root colonization and resulted only in increased plant biomass at high levels of compost amendment. These data suggest that the positive association between compost amendment and root colonization is important in the stressed mine tailings environment where root colonization may enhance both microbial and plant survival and growth.  相似文献   

10.
添加污泥对尾矿砂理化性质及香樟生理特性的影响   总被引:4,自引:0,他引:4  
王江  张崇邦  柯世省  刘文莉  钱宝英 《生态学报》2010,30(10):2593-2602
以香樟作为指示植物,选取黄岩、临海和路桥地区污水处理厂污泥,将污泥与尾矿砂按(污泥质量比例为0%对照、25%、50%和75%)配比进行栽培试验。测定添加污泥对尾矿砂理化性质以及香樟生理特性的影响。结果表明:随着污泥比例的增加,混合基质中的有机质、全氮、全磷明显增加,pH值明显降低,离子交换量明显减少,Cu和Cd总量明显增加,而Pb总量明显减少,Zn总量没有明显变化,Cu、Cd和Zn的DTPA提取量明显增加,而Pb的DTPA提取量明显减少。黄岩和临海污泥在25%和50%比例时,香樟叶和茎的生物量和叶绿素含量明显增加,而根的生物量没有明显变化,在75%比例时,生物量和叶绿素含量均明显减少;而添加路桥污泥使香樟叶、茎和根的生物量和叶绿素含量明显减少。丙二醛含量则与生物量和叶绿素含量呈现相反的变化特征。黄岩和临海污泥在25%和50%比例时,根和叶的Cu、Cd、Pb和Zn含量明显减少,在75%比例时,Cu、Cd和Zn含量则明显增加;而添加路桥污泥使叶和根的Cu、Cd和Zn含量明显增加,Pb含量明显减少。研究表明添加污泥提高了尾矿砂的养分含量,同时改变了其重金属组成,对污泥重金属含量和有机质组成的监控可以准确地预测污泥改良后尾矿砂对植物毒性的变化。  相似文献   

11.
The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.  相似文献   

12.
Phytoremediation of mine tailings in temperate and arid environments   总被引:9,自引:0,他引:9  
Phytoremediation is an emerging technology for the remediation of mine tailings, a global problem for which conventional remediation technologies are costly. There are two approaches to phytoremediation of mine tailings, phytoextraction and phytostabilization. Phytoextraction involves translocation of heavy metals from mine tailings to the plant shoot biomass followed by plant harvest, while phytostabilization focuses on establishing a vegetative cap that does not shoot accumulate metals but rather immobilizes metals within the tailings. Phytoextraction is currently limited by low rates of metal removal which is a combination of low biomass production and insufficiently high metal uptake into plant tissue. Phytostabilization is currently limited by a lack of knowledge of the minimum amendments required (e.g., compost, irrigation) to support long-term plant establishment. This review addresses both strategies within the context of two specific climate types: temperate and arid. In temperate environments, mine tailings are a source of metal leachates and acid mine drainage that contaminate nearby waterways. Mine tailings in arid regions are subject to eolian dispersion and water erosion. Examples of phytoremediation within each of these environments are discussed. Current research suggests that phytoextraction, due to high implementation costs and long time frames, will be limited to sites that have high land values and for which metal removal is required. Phytostabilization, due to lower costs and easier implementation, will be a more commonly used approach. Complete restoration of mining sites is an unlikely outcome for either approach.  相似文献   

13.
An experiment was performed to determine the effects of mine tailings alone mixed with compost or with compost plus crude biosurfactant on the accumulation of heavy metals (Pb, Zn, Cu, Cr, Cd, and Ni) in Acacia retinodes, Nicotiana glauca, and Echinochloa polystachya. The plants were grown in soil, mine tailings, and mine tailings containing compost over a period of seven and five months for shrubs or grass, respectively. The plants Acacia retinodes and Nicotiana glauca grown in mine tailings containing compost showed increases in dry biomass (from 62 to 79%) compared with plants in only tailings. Heavy metals accumulated in the roots and leaves showed high translocation rates of Cr in N. glauca, Cd in A. retinodes, and Ni in E. polystachya. Concentrations of heavy metals in the three plants irrigated with crude biosurfactant were not significantly different from those irrigated with water. Zn and Cd fractions within mine tailings containing compost were bound to carbonate, Pb was bound to residues, and Cu was bound to Fe-oxides. Cd had the highest mobility factor followed in order by Zn, Pb, and Cu. The elevated concentrations of Pb in roots and the low translocation rate for N. glauca and A. retinodes indicate that they are suitable for phytostabilizing Pb and Zn.  相似文献   

14.
铜尾矿对小麦生长发育和生理功能的影响   总被引:46,自引:4,他引:42  
通过盆栽实验,分析了铜陵铜尾矿对小麦生长发育和生理功能的影响。结果表明,小麦种子能在铜尾矿上萌发,但发芽率和发芽速率均小于正常土壤中播种的小麦,高比例尾矿抑制小麦的株高,尾矿降低叶绿素含量,但对叶绿素a/b无影响,与对照组相比,尾矿组根系表现为变短变粗,须根数减少,尾矿能增加小麦根和茎叶部分生物量,且能明显提高根冠比,在尾矿胁迫下,小麦叶片的细胞膜透性和游离脯氨酸含量随尾矿比例增加而增大,可作为鉴定植物相对抗性的指标。  相似文献   

15.
This study uses an ecotoxicology approach to evaluate the effectiveness of combining powdered marble as an amendment, with phytostabilization by Medicago sativa L. on the neutralization of acidic mine tailings, and the stabilization of heavy metals. The mine tailings were collected from an abandoned polymetallic mine in Southern Morocco, and mixed with powdered marble as the following proportions, 25%, 50%, and 75%. Laboratory immobilization/stabilization tests showed that the application of powdered marble in the treatments led to a significant increase in pH, and significant reductions of Cu, Zn (99%), Pb (98%), and Fe (45%). Greenhouse experiments showed that plant growth in all treatments was significantly (p ≤ 0.05) less than growth in agricultural soil. Plant growth significantly (p ≤ 0.05) decreased as the proportion of powdered marble increased. The concentration of metals in plant roots were significantly (p ≤ 0.05) higher than those of shoots. Combining immobilization by powdered marble with phytostabilization by M. sativa L. could represent a viable method of rehabilitating acidic polymetallic mine tailings.  相似文献   

16.
Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p?<?0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development.  相似文献   

17.
Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.  相似文献   

18.
Soil communities are often degraded in mined sites, and facilitating the recovery of soil mutualists such as arbuscular mycorrhizal fungi (AMF) may assist with the restoration of native plants. At a grassland mine restoration site, I compared a commercial AMF inoculum with soil collected from beneath native grasses as a source of inoculum, as well as a control treatment. Field plots were broadcast‐inoculated and seeded with native grasses, and biomass of native and non‐native species was measured in three consecutive years. In addition, greenhouse‐grown seedlings of a native bunchgrass (Stipa pulchra) were inoculated with similar treatments, transplanted into the field, and assessed after 18 months. When broadcast inoculation was used, the local soil inoculum tended to increase non‐native grass biomass, and marginally decreased non‐native forb biomass in the second year of study, but did not significantly affect native grass biomass. Broadcast commercial inoculum had no detectable effects on biomass of any plant group. Stipa pulchra transplants had greater N content and mycorrhizal colonization, and marginally higher shoot mass and K content, when pre‐inoculated with local soil (relative to controls). Pre‐inoculation with commercial AMF increased AMF colonization of the S. pulchra transplants, but did not significantly affect biomass or nutrient content. The findings indicate that at this site, the use of local soil as an inoculum had greater effects on native and non‐native plants than the commercial product used. In order to substantially increase native grass performance, inoculation of transplanted plugs may be one potential strategy.  相似文献   

19.
The efficiency of composted municipal solid wastes (MSW) to reduce the adverse effects of salinity was investigated in Hordeum maritimum under greenhouse conditions. Plants were cultivated in pots filled with soil added with 0 and 40tha(-1) of MSW compost, and irrigated twice a week with tap water at two salinities (0 and 4gl(-1) NaCl). Harvests were achieved at 70 (shoots) and 130 (shoots and roots) days after sowing. At each cutting, dry weight (DW), NPK nutrition, chlorophyll, leaf protein content, Rubisco (ribulose-bisphosphate carboxylase/oxygenase) capacity, and contents of potential toxic elements were determined. Results showed that compost supply increased significantly the biomass production of non salt-treated plants (+80%). This was associated with higher N and P uptake in both shoots (+61% and +80%, respectively) and roots (+48% and +25%, respectively), while lesser impact was observed for K+. In addition, chlorophyll and protein contents as well as Rubisco capacity were significantly improved by the organic amendment. MSW compost mitigated the deleterious effect of salt stress on the plant growth, partly due to improved chlorophyll and protein contents and Rubisco capacity (-15%, -27% and -14%, respectively, in combined treatment, against -45%, -84% and -25%, respectively, in salt-stressed plants without compost addition), which presumably favoured photosynthesis and alleviated salt affect on biomass production by 21%. In addition, plants grown on amended soil showed a general improvement in their heavy metals contents Cu2+, Pb2+, Cd2+, and Zn2+ (in combined treatment: 190%, 53%, 168% and 174% in shoots and 183%, 42%, 42% and 114% in roots, respectively) but remained lower than phytotoxic values. Taken together, these findings suggest that municipal waste compost may be safely applied to salt-affected soils without adverse effects on plant physiology.  相似文献   

20.
The application of anaerobically digested biosolids as a nutrient source for pecan, Carya illinoinensis (Wangeh.) K. Koch, cultivar Western, was evaluated. Conventional NPK fertilizers (CF) and biosolids included a treatment with the rhizospheric fungi Pisolithus tinctorius+Scleroderma sp. and Trichoderma sp. After an average of three years, the tree trunks with biosolid treatment grew 9.5% more than with CF; the length of the bearing shoots was 18.1 and 18.3cm and the production of nuts/tree was 9.26 and 8.75kg for pecans with CF and with biosolids, respectively. Western foliar nutrient concentration and nut quality were statistically equal in trees with CF and with biosolids. Soil inoculation with mycorrhizal fungi improved shoot growth by 19.4% when CF was applied, but did not when biosolids were used. Nutrient status and yield did not increase with mycorrhizal fungi. The addition of Trichoderma sp. did not favor any of the variables evaluated with both nutrient sources. Biosolids are efficient fertilizer at promoting the growth, production and nut quality of pecan trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号