首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

2.
The regulation of receptor-operated calcium channels of human platelets by phospholipid-dependent, Ca2+- and diacylglycerol-activated protein kinase C was studied. In order to induce the activation of endogenous protein kinase C, a cell-penetrable structural diacylglycerol analog, 4 beta-phorbol 12 beta-myristate-13 alpha-acetate (FMA), was used. Using two independent approaches, i. e., the fluorescent probe for Ca2+, quin-2, and 45Ca2+ absorption technique, it was demonstrated that FMA (10(-10) - 10(-8) g/ml) blocks Ca2+ influx into the platelets induced by aggregation factors, e. g., ADP, vasopressin, platelet activating factor, thrombin and thromboxane A2 receptor agonist U46619. The half-maximum inhibition of the receptor-sensitive influx of Ca2+ was observed at (3-6) X 10(-10) g/ml of FMA. Under physiological conditions, protein kinase C is activated with an increase in Ca2+ concentration in the cytoplasm in the presence of diacylglycerol. Since the above-mentioned inducers besides Ca2+ influx stimulate diacylglycerol synthesis, it was assumed that the activation of protein kinase C triggers a negative feedback mechanism which blocks the receptor-operated calcium channels.  相似文献   

3.
The effects of sphingosine, the newly described inhibitor of the enzyme protein kinase C, on human platelet activation, were studied in order to gain further information on the role of protein kinase in platelet responses. Concentrations of the drug (5-20 microM) which had little effect on protein kinase C activation as measured by the phosphorylation of the 45 kDa and 20 kDa protein substrates induced by phorbol 12-myristate 13-acetate (PMA) and thrombin, strongly inhibited platelet aggregation induced by these agonists, as well as aggregation induced by ADP and ionomycin, which caused no detectable protein kinase C activation or 5-hydroxy[14C]tryptamine[( 14C]5HT) secretion. At approx. 10-fold higher concentrations (150-200 microM), sphingosine had significant inhibitory effects on PMA and thrombin-induced 45 kDa and 20 kDa protein phosphorylation. However, at these high concentrations, the drug caused extensive membrane damage/leakiness as suggested by the substantial release of [14C]5HT and [3H]adenine from pre-loaded platelets (50-70% release of both markers), and the total quenching of quin2 fluorescence by Mn2+ in the presence of the drug. Due to the increased membrane leakiness in the presence of the drug, an apparent potentiation of agonist-induced intracellular Ca2+ elevations in quin2-loaded platelets, as well as an increase in quin2 fluorescence with the drug alone (more than 50 microM) were also observed. Despite this, however, thrombin-induced [3H]arachidonate release was severely reduced in the presence of sphingosine, underlining the inhibitory effects at the membrane level. It is concluded that the weak, if any, inhibitory effects on protein kinase C at concentrations not affecting membrane integrity, as well as the inhibitory effects of sphingosine on platelet aggregation, make it an unsuitable compound as a tool for studies on platelet stimulus-response coupling.  相似文献   

4.
Thrombin stimulated rapid formation of diacylglycerol, inositol 1,4,5-trisphosphate (IP3) and thromboxane B2 (TXB2) in human platelets. Formation of diacylglycerol and IP3 appeared to precede that of TXB2. Activation of protein kinase C by diacylglycerol combining with Ca+2 mobilization by IP3 has been implicated in mediating arachidonate release. However, addition of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) to platelet suspension did not inhibit thrombin-stimulated arachidonate release and TXB2 synthesis, whereas addition of the Ca+2 antagonist, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) or the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) abolished arachidonate release. The correlation of IP3 production with arachidonate release on increasing the concentrations of thrombin was further examined. IP3 production reached near maximum at 0.2 U/ml, whereas TXB2 synthesis continued to increase at 1 U/ml. These results suggest that protein kinase C activation may not mediate arachidonate release and that Ca+2 mobilization by IP3 may only partially account for arachidonate release in platelets stimulated with relatively high concentrations of thrombin.  相似文献   

5.
Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.  相似文献   

6.
R59022 is an inhibitor of the enzyme 1,2-diacylglycerol (DAG) kinase, which, by inhibiting the conversion of DAG to phosphatidic acid, causes an increase in endogenous DAG levels and the activity of the DAG-dependent enzyme protein kinase C. This property of the drug was utilized in the present study to assess the role of DAG, i.e., its relative importance as a potentiatory versus inhibitory mediator, in agonist-induced platelet activation. The phosphorylation of the 40-47-kDa protein by protein kinase C was monitored as an indicator of endogenous DAG levels and correlated with other agonist-induced platelet responses such as platelet aggregation, 5-hydroxytryptamine (5HT) secretion and arachidonate release, the agonists used being those that induce DAG formation, e.g., thrombin and collagen. Pretreatment of platelets with R59022 before agonist addition resulted in the potentiation of 5HT secretion as well as 45 kDa protein phosphorylation induced by thrombin and the DAG analogue, 1,2-dioctanoylglycerol (DiC8). However, collagen-induced 5HT secretion was significantly inhibited (70%) in the presence of R59022, which also had strong inhibitory effects on aggregation induced by collagen, as well as by thrombin and DiC8. The inhibition of collagen-induced secretion by R59022 was in contrast to the potentiatory effects of DiC8 on the same, suggesting that even although DAG acts as a potentiatory signal in this system, the inhibitory effects of R59022 on collagen-induced aggregation can mask any effects of endogenous DAG. This inhibitory effect of R59022 on agonist-induced platelet aggregation makes it unsuitable as a tool in studying the role of DAG in platelet activation induced by agonists such as collagen as well as the 'weak' agonists (ADP, adrenaline and platelet-activating factor), where aggregation mediates other responses such as arachidonate release and secretion. Furthermore, potentiatory effects of R59022 on 5HT secretion induced by phorbol 12-myristate 13-acetate and ionomycin, which are effects unlikely to be related to inhibition of DAG kinase was observed, and these effects further underline the non-specificity in the actions of R59022 and its limitations as a tool in studying platelet stimulus-response coupling.  相似文献   

7.
A biochemical pathway to platelet activation involving protein kinase C has been deemed "Ca2+-independent", because the intracellular fluorophore quin2 indicates no rise in cytoplasmic [Ca2+] in platelets stimulated by certain agonists. However, unlike quin2, the Ca2+-sensitive photoprotein aequorin demonstrates a rise in [Ca2+] when platelet aggregation is induced by phorbol ester or diacylglycerol. Aequorin and quin2 appear to report different aspects of Ca2+ homeostasis, and the absence of a quin2 signal may not be sufficient to establish that a metabolic pathway is "Ca2+-independent".  相似文献   

8.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

9.
The role of Na+/H+ exchange in protein kinase C-mediated effects in platelets was investigated by studying the effect of removal of extracellular Na+ ([Na+]e) on the different responses induced by phorbol 12-myristate 13-acetate (PMA) and 1,2-dioctanoylglycerol (diC8). None of the responses studied, namely, protein phosphorylation, translocation of enzyme activity to the membrane fraction, potentiatory and inhibitory effect on platelet activation ([Ca2+]i, arachidonate and granule release) showed an absolute dependence on [Na+]e. With the exception of dense-granule release, which was clearly potentiated by the removal of [Na+]e and showed a negative correlation with exchanger activity, the other effects of PMA and diC8 were not affected by [Na+]e removal. It is concluded that Na+/H+ exchange is not essential for protein kinase C activation in platelets.  相似文献   

10.
Epidermal growth factor (EGF) is produced in large quantities by the kidney. We identified EGF-binding sites on cultured rat renal glomerular mesangial cells. These cells serve as a model system for the investigation of renal prostaglandin biosynthesis. Since EGF has been shown to modulate phospholipase activity in other cell lines, we studied the ability of EGF to increase arachidonate release and prostaglandin E2 (PGE2) production in mesangial cells. We found that EGF stimulated arachidonate release and PGE2 production in the presence of the Ca2+ ionophore A23187. This stimulation was markedly potentiated by the addition of phorbol myristate acetate (PMA), which activates protein kinase C. However, down-regulation of protein kinase C by prolonged PMA treatment did not block the ability of EGF to stimulate PGE2 production in the presence of A23187. EGF also markedly potentiated the stimulation of PGE2 production by vasopressin, which increases intracellular Ca2+ and activates protein kinase C in these cells. The stimulatory effects of EGF were not the result of prolongation or enhancement of an increase in intracellular Ca2+ produced by ionophore or vasopressin. Furthermore, the synergistic interaction of EGF with PMA and vasopressin occurred despite the fact that these agents markedly decreased EGF binding in mesangial cells, presumably owing to protein-kinase-C-mediated phosphorylation of the EGF receptor. We conclude that there exists a distinct pathway for EGF-stimulated arachidonate release and PGE2 production in rat renal glomerular mesangial cells, which is synergistic with, but not dependent on, activation of protein kinase C. In contrast with long-term mitogenic responses to EGF, this rapid response may allow delineation of the membrane phospholipid changes and signalling steps involved in this aspect of EGF action.  相似文献   

11.
ADP, added to suspensions of aspirinized 32P-prelabelled washed platelets, induced reversible platelet aggregation, the rapid elevation of cytosolic Ca2+ (maximum at 2 s), 20 kDa myosin light chain phosphorylation (maximum faster than 3 s), 40 kDa protein phosphorylation (maximum at 3-10 s) and phosphatidic acid formation (maximum at 30 s). Prior addition of epinephrine potentiated platelet aggregation, cytosolic Ca2(+)-elevation, 20 and 40 kDa protein phosphorylation evoked by ADP, but it did not enhance phosphatidic acid formation induced by ADP. The potentiating effect of epinephrine on aggregation, cytosolic Ca2(+)-increase and 20 and 40 kDa protein phosphorylation induced by ADP was also observed in the presence of EGTA. Ethylisopropylamiloride, an inhibitor of Na+/H(+)-exchange, did not affect the potentiation of ADP-induced platelet aggregation by epinephrine. We conclude that epinephrine primes platelets to increase Ca2(+)-influx and Ca2(+)-mobilization in response to ADP. The potentiation of cytosolic Ca2(+)-elevation by epinephrine leads to further stimulation of myosin light chain phosphorylation and protein kinase C activation and ultimately to enhanced platelet aggregation. These effects of epinephrine do not seem to take place at the level of phospholipase C.  相似文献   

12.
13.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

14.
To elucidate the mechanism of the receptor-stimulated Ca2+ entry into human platelets, the influence of Ca(2+)-mobilizing agonists on plasma membrane potential (Em) has been studied. Em changes were registered using potentiometric probe 3,3'-dipropyl-2,2'-thiadicarbocyanine iodide. The agonist effect on Em varied from hyperpolarization to slight and slow rise. On the contrary, after loading of platelets with intracellular Ca2+ indicator quin2, platelet-activating factor (PAF), thrombin, vasopressin, ADP and thromboxane-A2-mimetic U46619 cause substantial transient membrane depolarization. Similar effects were observed after platelet loading with other Ca2+ chelators fura-2 and indo-1. Agonist-induced depolarization considerably reduced if quin2-loaded platelets were suspended in isoosmotic choline-containing medium. Using Ba2+ as a substitute of Ca2+, we have demonstrated that in choline-containing medium PAF-induced Ba2+ entry into platelets results in membrane depolarization. Dependence on Ba2+ concentration and depolarization kinetics correlates with the dose dependence and kinetics of Ba2+ entry detected by quin2 fluorescence. The agonists also stimulate considerable Na+, Li+ and Cs+ inward currents into platelets. Na(+)-dependent depolarization is 2-5-fold suppressed by extracellular Ca2+ [median inhibitory concentration (IC50) approximately 0.3 mM]. Ni2+ and Cd2+ at similar concentrations block Ca2+ entry and agonist-induced Na2+ current (IC50 for both cations approximately 50 microM). Agonist-induced depolarization is blocked by the adenylate cyclase stimulator prostaglandin E1 and the protein kinase C stimulator phorbol ester. It is concluded that agonists stimulate Ca2+ entry into human platelets via receptor-operated channels which are not strictly selective toward divalent cations and are permeable to Na+, Li+ and Cs+.  相似文献   

15.
Low concentrations of wheat germ agglutinin (4 micrograms/ml) have been shown to act synergistically to induce platelet aggregation with epinephrine, collagen, arachidonate and ionophore A23187. Aggregation ceased on the addition of the haptenic sugar N-acetylglucosamine at any time following the onset of aggregation with these agonists and a small degree of disaggregation was observed during the reversible first wave with the biphasic aggregating agents epinephrine and ADP. Cyclooxygenase inhibitors such as indomethacin and aspirin blocked the second wave of aggregation with the biphasic aggregating agents epinephrine and ADP but a synergistic response continued to be shown with the first wave in the presence of these inhibitors. Release of [14C]serotonin and the mobilization of [3H]arachidonate by epinephrine and collagen were markedly stimulated in the presence of wheat germ agglutinin but there was no increase of either radiolabel in the case of ADP. Platelet shape change, but not aggregation, occurred with low levels of wheat germ agglutinin and the synergistic response with ADP, collagen or ionophore A23187 occurred without further shape change. Wheat germ agglutinin did not affect the basal or stimulated levels of cyclic AMP. The membrane fluidity of platelets was not affected by the lectin or by thrombin as shown by the lack of change in fluorescence polarization with diphenylhexatriene. It is suggested that the binding of wheat germ agglutinin to the platelet surface induces platelet activation by mechanisms similar to those of other agonists and that it may affect the distribution of membrane-bound Ca2+ by a reversible perturbation of the platelet membrane.  相似文献   

16.
Lysophosphatidylcholine (lyso-PC) and arachidonate are products of phosphatidylcholine hydrolysis by phospholipase A(2). In this study, the modulation of arachidonate release by exogenous lyso-PC in rat heart myoblastic H9c2 cells was examined. Incubation of H9c2 cells with lyso-PC resulted in an enhanced release of arachidonate in both a time- and dose-dependent fashion. Lyso-PC species containing palmitoyl (C(16:0)) or stearoyl (C(18:0)) groups evoked the highest amount of arachidonate release, while other lysophospholipid species were relatively ineffective. Cells treated with phospholipase A(2) inhibitors resulted in the attenuation of the enhanced arachidonate release in the presence of lyso-PC. Lyso-PC caused the translocation of phospholipase A(2) from the cytosol to the membrane fraction and induced an increase in Ca2+ flux from the medium into the cells. Nimodipine, a specific Ca(2+)-channel blocker, partially attenuated the lyso-PC-induced rise in intracellular Ca2+. Concurrent with Ca2+ influx, lyso-PC caused an enhancement of protein kinase C activity. The lyso-PC-induced arachidonate release was attenuated when cells were pre-incubated with specific protein kinase C and mitogen activated protein kinase kinase inhibitors. Taken together, these results strongly indicate that the lyso-PC-induced increases in levels of intracellular calcium and stimulation of protein kinase C lead to the activation of cytosolic phospholipase A(2) which results in the enhancement of arachidonate release in H9c2 cells.  相似文献   

17.
Sphingosine is a potent inhibitor of [3H]phorbol dibutyrate binding and protein kinase C activity in vitro and in human platelets (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. (1986) J. Biol. Chem. 261, 12604-12609). Preincubation of platelets with sphingosine resulted in the inhibition of platelet secretion and second phase aggregation in response to ADP, gamma-thrombin, collagen, arachidonic acid, and platelet activating factor. Sphingosine did not affect the initial shape change of platelets or the first phase of aggregation in response to these agonists. Ristocetin-induced platelet agglutination was not affected by sphingosine. Sphingosine inhibition of secondary aggregation (secretion and second phase aggregation) was overcome by phorbol dibutyrate and by the cell-permeable protein kinase C activator, dioctanoylglycerol. Furthermore, platelet secretion and irreversible aggregation were induced by protein kinase C activators in platelets that had been "primed" to undergo initial shape change and first phase aggregation by low concentrations of agonists. These results suggest that protein kinase C activation is a necessary component in the signal transducing pathways that lead to platelet activation. Higher concentrations of agonists, however, induced irreversible aggregation and partial secretion in the presence of sphingosine, suggesting the existence of protein kinase C-independent pathways for platelet activation. These results demonstrate the utility of sphingosine as a pharmacologic tool in probing the role of protein kinase C in signal transduction.  相似文献   

18.
Antibodies were raised, in rabbits, against an arachidonate- and U46619-binding protein purified from calf platelets. Spectral measurements and immunodiffusion experiments were employed to follow conformational responses of the protein in relation to platelet activation. Upon treatment with the platelet agonists, arachidonate and PGH2, as well as the common haem ligands, imidazole and CN-, the purified protein had its Soret band red-shifted, with hypochromicity, but the protein saturated with the agonists, not with the haem ligands, showed altered antigenic properties in immunodiffusion experiments. In an analogous manner activation of gel-filtered calf platelets with high concentrations of ADP and A23187, as well as by cold, had Soret bands of extracts of sonicated platelets red-shifted, with hypochromicity; concomitantly, antigenically different conformations of the protein appeared in Triton X-100 extracts of the activated platelets. A protein immunologically related to the platelet protein was detected in Triton X-100 extracts of calf neutrophils. It is suggested that conformational changes of the protein induced by arachidonate or prostaglandin endoperoxides or H2O2 formed in different compartments during platelet activation by different stimuli may be a biochemical mechanism of stimulus-response coupling and that similar mechanisms might operate in other cell types.  相似文献   

19.
Long chain unsaturated fatty acids stimulate phosphorylase "a" activity in liver cells. Similar degree of activation was achieved by increasing cellular Ca2+ content or by treatment with agents other than oleate, like 1,2-diolein or phorbol esters, sharing in common their ability to activate protein kinase C. In Ca2+-loaded liver cells only phenylephrine was capable of inducing a further stimulation of phosphorylase "a" activity. It is concluded that: 1) The state of activation of protein kinase C may play a role in the hormonal control of liver glycogen metabolism; 2) alpha 1-agonist-mediated activation of phosphorylase "a" can occur by a mechanism which is not related to a Ca2+-dependent activation of protein kinase C.  相似文献   

20.
J S Elce  L Sigmund    M J Fox 《The Biochemical journal》1989,261(3):1039-1042
Calpain-catalysed hydrolysis of platelet substrates such as cytoskeletal and calmodulin-binding proteins, and of protein kinase C, is assumed to contribute to platelet aggregation. We have measured calpain I activation by immunoblotting, and [Ca2+]i (cytoplasmic Ca2+ concn.) by fura-2 fluorescence, in parallel with measurement of aggregation, in stirred human platelets treated at different [Ca2+]ext (extend Ca2+ concns.) with A23187, leupeptin, phorbol ester and thrombin. Hydrolysis of actin-binding protein, and [3H]5-hydroxytryptamine release, were also measured in some cases. A rise in [Ca2+]i, platelet aggregation and calpain activation often occurred together. With some combinations of agonists and [Ca2+]ext, however, this correlation was clearly not maintained. It was shown: (a) that activation of calpain and its hydrolysis of platelet substrates were not strictly necessary conditions for platelet secretion and aggregation; (b) conversely, that calpain activation could occur without aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号