首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
植物果聚糖是一类重要的碳水化合物和渗透调节物质,可以提高植物的抗逆性。目前对植物果聚糖代谢酶基因的研究较多,主要包括相关基因的克隆、表达和利用基因工程技术将果聚糖相关代谢基因转入植物中。该文主要介绍了果聚糖的分布、种类、代谢途径及相关基因的克隆和表达,重点阐述了果聚糖在植物抗逆中的作用及其分子生物学研究进展。  相似文献   

2.
植物果聚糖合成酶基因克隆及特性分析   总被引:2,自引:0,他引:2  
果聚糖(fructan)是蔗糖来源的果糖多聚体,果聚糖的类型常因聚合度的多寡、分支结构有无、相邻果糖基成键差异及葡萄糖位置不同而多种多样。果聚糖不仅是植物储存非结构性碳水化合物的形式之一,而且在干旱、低温等非生物胁迫中具有保护植物细胞免受伤害的作用。果聚糖作为一种益生素,对人体健康具有保健作用,有效减少或避免结肠癌、心血管疾病及骨质疏松等发病机率。本文就果聚糖的存在形式、生物合成代谢途径、果聚糖合成酶(fructan biosynthetic enzymes, FBEs)基因的克隆和转化等研究做一介绍,并对植物中FBEs结构特点进行了分析,同时对小麦中FBEs基因的拷贝数、染色体定位及亚细胞定位等研究进行了商榷,为从更多植物中分离FBEs基因,研究FBEs基因的作用方式和表达特性,以及利用转基因技术提高重要作物抗逆性奠定基础。  相似文献   

3.
果聚糖是高等植物重要的贮藏碳水化合物,因植物种类和发育阶段而异,主要存在5种类型的结构:线型菊糖型果聚糖、菊糖型果聚糖新生系列、线型梯牧草糖型果聚糖、混合型梯牧草糖型果聚糖和梯牧草糖型果聚糖新生系列。果聚糖的代谢模型随着代谢酶—蔗糖:蔗糖果糖基转移酶、蔗糖:果聚糖_6_果糖基转移酶、果聚糖:果聚糖果糖基转移酶、果聚糖:果聚糖_6_果糖基转移酶、果聚糖外水解酶等的发现、纯化和克隆日趋清晰。此外,果聚糖分子生物学研究也取得了一定的进展。  相似文献   

4.
高等植物果聚糖研究进展   总被引:6,自引:0,他引:6  
果聚糖是高等植物重要的贮藏碳水化合物 ,因植物种类和发育阶段而异 ,主要存在 5种类型的结构 :线型菊糖型果聚糖、菊糖型果聚糖新生系列、线型梯牧草糖型果聚糖、混合型梯牧草糖型果聚糖和梯牧草糖型果聚糖新生系列。果聚糖的代谢模型随着代谢酶—蔗糖 :蔗糖果糖基转移酶、蔗糖 :果聚糖_6_果糖基转移酶、果聚糖 :果聚糖果糖基转移酶、果聚糖 :果聚糖_6_果糖基转移酶、果聚糖外水解酶等的发现、纯化和克隆日趋清晰。此外 ,果聚糖分子生物学研究也取得了一定的进展  相似文献   

5.
植物天冬氨酸代谢途径关键酶基因研究进展   总被引:3,自引:0,他引:3  
谷类作物和豆类作物的营养价值主要体现在以天冬氨酸为前体的必需氨基酸的含量上。植物中这些氨基酸的含量受天冬氨酸代谢途径中关键酶基因的影响。本文综述了这些酶基因的克隆、在大肠杆菌和不同植物中表达的研究进展。  相似文献   

6.
植物非结构性贮藏碳水化合物的生理生态学研究进展   总被引:2,自引:0,他引:2  
非结构性碳水化合物是参与植物生命过程的重要物质。蔗糖不仅是植物体内碳水化合物运输的主要形式,而且可以在基因表达水平上对细胞内的代谢进行调节。果聚糖是植物营养组织碳水化合物的主要暂贮形式;淀粉是植物主要的长期贮藏物质之一。植物体内非结构性碳水化合物的代谢在很大程度上影响着植株的生长发育和对环境因子的响应。综述了植物非结构性贮藏碳水化合物的生理生态学研究进展,着重介绍了蔗糖、果聚糖和淀粉代谢的生理过程及对环境因子(温度和水分)和人为因素的响应机制。  相似文献   

7.
植物耐热相关基因研究进展   总被引:1,自引:0,他引:1  
植物受到高温胁迫时,会激活某些特定基因的表达,从而增强植物的耐热性。近年来,随着生物技术的不断发展,植物耐热相关基因被相继克隆并转化植物体。本文对植物耐热的分子机制、相关基因的克隆、耐热性基因工程研究进展进行了综述,并提出了植物耐热基因工程的研究方向。  相似文献   

8.
植物非结构性贮藏碳水化合物的生理生态学研究进展   总被引:39,自引:0,他引:39  
非结构性碳水化合物是参与植物生命过程的重要物质。蔗糖不仅是植物体内碳水化合物运输的主要形式,而且可以在基因表达水平上对细胞内的代谢进行调节。果聚糖是植物营养组织碳水化合物的主要暂贮形式;淀粉是植物主要的长期贮存物质之一。植物体内非结构性碳水化合物的代谢在很大程度上影响着植株的生长发育和对环境因子的响应。综述了植物非结构性贮藏碳水化合物的生理生态学研究进展,着重介绍了蔗糖,果聚糖和淀粉代谢的生理过程及对环境因子(温度和水分)和人为因素的响应机制。  相似文献   

9.
植物耐盐的分子机理研究进展   总被引:14,自引:0,他引:14  
综述了与植物耐盐性密切相关的小分子渗透物质(脯氨酸,甜菜碱,多元醇,多胺,果聚糖),晚期胚胎发生富集蛋白(LEA),调渗蛋白(OSM),水通道蛋白,K^ 通道蛋白和ATPase等的合成及其相关基因的表达。  相似文献   

10.
植物逆境胁迫抗性的功能基因组研究策略   总被引:2,自引:0,他引:2  
植物对逆境胁迫抗性的功能基因组研究主要是寻找胁迫抗性位点在相关物种基因组中的保守位置,发现胁迫反应中的高度保守序列,确定植物胁迫反应的调控机理,进而得到植物对逆境胁迫抗性的关键代谢途径和其中的关键调控因子,为进一步选择用于改良植物对逆境胁迫抗性的关键基因奠定基础。本文从主要模式植物(苔藓类植物、复苏植物、盐土植物和甜土植物)、主要技术策略(基因的差异表达分析、基因表达序列标签、cDNA芯片技术。基因表达序列分析和基因敲除和突变体筛选分析)和生物信息学方法(数据分析的生物信息学方法设计到序列比较、比较基因组学、电子克隆)等三个方面对国内外植物逆境胁迫抗性的功能基因组研究策略作了全面综述。  相似文献   

11.
The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants.  相似文献   

12.
M Ishitani  L Xiong  H Lee  B Stevenson    J K Zhu 《The Plant cell》1998,10(7):1151-1161
Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time.  相似文献   

13.
To investigate whether the route from sucrose to starch limits sink strength of potato tubers, we established an additional storage carbohydrate pool and analyzed allocation of imported assimilates to the different pools. Tuber specific expression of the fructan biosynthetic enzymes of globe artichoke resulted in accumulation of fructans to about 5% of the starch level, but did not increase tuber dry weight per plant. While partial repression of starch synthesis caused yield reduction in wild-type plants, it stimulated fructan accumulation, and yield losses were ameliorated in tubers expressing fructosyltransferases. However, a nearly complete block of the starch pathway by inhibition of sucrose synthase could not be compensated by the fructan pathway. Although fructan concentrations rose, yield reduction was even enhanced, probably because of a futile cycle of fructan synthesis and degradation by invertase, which is induced when sucrose synthase is knocked out. The data do not support a limitation of sink strength by enzyme activities of the starch pathway but point to an energy limitation of storage carbohydrate formation in potato tubers.  相似文献   

14.
Fructans: beneficial for plants and humans   总被引:5,自引:0,他引:5  
The recent cloning of genes encoding fructosyltransferases and fructan exohydrolases has been a major breakthrough in fructan research. Now, fructan metabolism and fructosyltransferase enzymes can be studied at the molecular level. In addition, fructan synthesis and breakdown can be adapted in such a way that tailor-made fructans are produced in plants for use as healthy food ingredients.  相似文献   

15.
16.
Fructan as a New Carbohydrate Sink in Transgenic Potato Plants   总被引:10,自引:0,他引:10       下载免费PDF全文
Fructans are polyfructose molecules that function as nonstructural storage carbohydrates in several plant species that are important crops. We have been studying plants for their ability to synthesize and degrade fructans to determine if this ability is advantageous. We have also been analyzing the ability to synthesize fructan in relation to other nonstructural carbohydrate storage forms like starch. To study this, we induced fructan accumulation in normally non-fructan-storing plants and analyzed the metabolic and physiological properties of such plants. The normally non-fructan-storing potato plant was modified by introducing the microbial fructosyltransferase genes so that it could accumulate fructans. Constructs were created so that the fructosyltransferase genes of either Bacillus subtilis (sacB) or Streptococcus mutans (ftf) were fused to the vacuolar targeting sequence of the yeast carboxypeptidase Y (cpy) gene. These constructs were placed under the control of the constitutive cauliflower mosaic virus 35S promoter and introduced into potato tissue. The regenerated potato plants accumulated high molecular mass (>5 [times] 106 D) fructan molecules in which the degree of polymerization of fructose units exceeded 25,000. Fructan accumulation was detected in every plant tissue tested. The fructan content in the transgenic potato plants tested varied between 1 and 30% of dry weight in leaves and 1 and 7% of dry weight in microtubers. Total nonstructural neutral carbohydrate content in leaves of soil-grown plants increased dramatically from 7% in the wild type to 35% in transgenic plants. Our results demonstrated that potato plants can be manipulated to store a foreign carbohydrate by introducing bacterial fructosyltransferase genes. This modification affected photosynthate partitioning in microtubers and leaves and increased nonstructural carbohydrate content in leaves.  相似文献   

17.
Fructans are multifunctional fructose‐based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so‐called “fructan syndrome,” is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.  相似文献   

18.
Inulin metabolism in dicots: chicory as a model system   总被引:13,自引:1,他引:12  
  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号