首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NCS1 proteins are H+/Na+ symporters specific for the uptake of purines, pyrimidines and related metabolites. In this article, we study the origin, diversification and substrate specificity of fungal NCS1 transporters. We show that the two fungal NCS1 sub‐families, Fur and Fcy, and plant homologues originate through independent horizontal transfers from prokaryotes and that expansion by gene duplication led to the functional diversification of fungal NCS1. We characterised all Fur proteins of the model fungus Aspergillus nidulans and discovered novel functions and specificities. Homology modelling, substrate docking, molecular dynamics and systematic mutational analysis in three Fur transporters with distinct specificities identified residues critical for function and specificity, located within a major substrate binding site, in transmembrane segments TMS1, TMS3, TMS6 and TMS8. Most importantly, we predict and confirm that residues determining substrate specificity are located not only in the major substrate binding site, but also in a putative outward‐facing selective gate. Our evolutionary and structure‐function analysis contributes in the understanding of the molecular mechanisms underlying the functional diversification of eukaryotic NCS1 transporters, and in particular, forward the concept that selective channel‐like gates might contribute to substrate specificity.  相似文献   

2.
The AzgA purine/H+ symporter of Aspergillus nidulans is the founding member of a functionally and phylogenetically distinct transporter family present in fungi, bacteria and plants. Here a valid AzgA topological model is built based on the crystal structure of the Escherichia coli uracil transporter UraA, a member of the nucleobase‐ascorbate transporter (NAT/NCS2) family. The model consists of 14 transmembrane, mostly α‐helical, segments (TMSs) and cytoplasmic N‐ and C‐tails. A distinct compact core of 8 TMSs, made of two intertwined inverted repeats (TMSs 1–4 and 8–11), is topologically distinct from a flexible domain (TMSs 5–7 and 12–14). A putative substrate binding cavity is visible between the core and the gate domains. Substrate docking, molecular dynamics and mutational analysis identified several residues critical for purine binding and/or transport in TMS3, TMS8 and TMS10. Among these, Asn131 (TMS3), Asp339 (TMS8) and Glu394 (TMS10) are proposed to directly interact with substrates, while Asp342 (TMS8) might be involved in subsequent substrate translocation, through H+ binding and symport. Thus, AzgA and other NAT transporters use topologically similar TMSs and amino acid residues for substrate binding and transport, which in turn implies that AzgA‐like proteins constitute a distant subgroup of the ubiquitous NAT family.  相似文献   

3.
Sinorhizobium (Ensifer) meliloti is a model example of a soil alpha-proteobacterium which induces the formation of nitrogen-fixing symbiotic nodules on the legume roots. In contrast to all other rhizobacterial species, S. meliloti contains multiple homologs of nucleobase transporter genes that belong to NAT/NCS2 family (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2). We analyzed functionally all (six) relevant homologs of S. meliloti 1,021 using Escherichia coli K-12 as a host and found that five of them are high-affinity transporters for xanthine (SmLL9), uric acid (SmLL8, SmLL9, SmX28), adenine (SmVC3, SmYE1), guanine (SmVC3), or hypoxanthine (SmVC3). Detailed analysis of substrate profiles showed that two of these transporters display enlarged specificity (SmLL9, SmVC3). SmLL9 is closely related in sequence with the xanthine-specific XanQ of E. coli. We subjected SmLL9 to rationally designed site-directed mutagenesis and found that the role of key binding-site residues of XanQ is conserved in SmLL9, whereas a single amino-acid change (S93N) converts the xanthine/uric-acid transporter SmLL9 to a xanthine-preferring variant, due to disruption of an essential hydrogen bond with the C8 oxygen of uric acid. The results highlight the presence of several different purine nucleobase transporters in S. meliloti and imply that the purine transport might be important in the nodule symbiosis involving S. meliloti.  相似文献   

4.
In the UapA uric acid-xanthine permease of Aspergillusnidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (ΔazgA ΔfcyB ΔuapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway.  相似文献   

5.
Transporters mediate the uptake of solutes, metabolites and drugs across the cell membrane. The eukaryotic FurE nucleobase/H+ symporter of Aspergillus nidulans has been used as a model protein to address structure–function relationships in the APC transporter superfamily, members of which are characterized by the LeuT-fold and seem to operate by the so-called ‘rocking-bundle’ mechanism. In this study, we reveal the binding mode, translocation and release pathway of uracil/H+ by FurE using path collective variable, funnel metadynamics and rational mutational analysis. Our study reveals a stepwise, induced-fit, mechanism of ordered sequential transport of proton and uracil, which in turn suggests that FurE, functions as a multi-step gated pore, rather than employing ‘rocking’ of compact domains, as often proposed for APC transporters. Finally, our work supports that specific residues of the cytoplasmic N-tail are involved in substrate translocation, in line with their essentiality for FurE function.  相似文献   

6.
Parasitic protozoa are unable to synthesise purines de novo and thus depend on the uptake of nucleosides and nucleobases across their plasma membrane through specific transporters. A number of nucleoside and nucleobase transporters from Trypanosoma brucei brucei and Leishmania major have recently been characterised and shown to belong to the equilibrative nucleoside transporter (ENT) family. A number of studies have demonstrated the functional importance of particular transmembrane segments (TMS) in nucleoside-specific ENT proteins. TbNBT1, one of only three bona fide nucleobase-selective members of the ENT family, has previously been shown to be a high-affinity transporter for purine nucleobases and guanosine. In this study, we use the Saccharomyces cerevisiae expression system to build a biochemical model of how TbNBT1 recognises nucleobases. We next performed random in vitro and site-directed mutagenesis to identify residues critical for TbNBT1 function. The identification of residues likely to contribute to permeant binding, when combined with a structural model of TbNBT1 obtained by homology threading, yield a tentative three-dimensional model of the transporter binding site that is consistent with the binding model emerging from the biochemical data. The model strongly suggests the involvement of TMS5, TMS7 and TMS8 in TbNBT1 function. This situation is very similar to that concerning transporters of the major facilitator superfamily (MFS), one of which was used as a template for the threading. This point raises the possibility that ENT and MFS carriers, despite being considered evolutionarily distinct, might in fact share similar topologies and substrate translocations pathways.  相似文献   

7.
In plants, nucleobase biochemistry is highly compartmented relying upon a well-regulated and selective membrane transport system. In Arabidopsis two proteins, AtAzg1 and AtAzg2, show substantial amino acid sequence similarity to the adenine-guanine-hypoxanthine transporter AzgA of Aspergillus nidulans. Analysis of single and double mutant lines harboring T-DNA insertion alleles AtAzg1-1 and AtAzg2-1 reveal a marked resistance to growth in the presence of 8-azaadenine and 8-azaguanine but not to other toxic nucleobase analogues. Conversely, yeast strains expressing AtAzg1 and AtAzg2 gain heightened sensitivity to growth on 8-azaadenine and 8-azaguanine. Radio-labeled purine uptake experiments in yeast and in planta confirm the function of AtAzg1 and AtAzg2 as plant adenine-guanine transporters.  相似文献   

8.
The coding potential of the genome of E. coli K-12 includes YgfO and YicE, two members of the evolutionarily conserved NAT/NCS2 transporter family that are highly homologous to each other (45% residue identity) and closely related to UapA of Aspergillus nidulans, a most extensively studied microbial member of this family. YgfO and yicE were cloned from the genome, over-expressed extrachromosomally and assayed for uptake of [3H]xanthine and other nucleobases, in E. coli K-12, under conditions of negligible activity of the corresponding endogenous systems. Alternative, essentially equivalent functional versions of YgfO and YicE were engineered by C-terminal tagging with an epitope from the E. coli lactose permease and a biotin-acceptor domain from Klebsiella pneumoniae. Both YgfO and YicE were shown to be present in the plasma membrane of E. coli and function as specific, high-affinity transporters for xanthine (Km 4.2–4.6 µM for YgfO, or 2.9–3.8 µM for YicE), in a proton motive force-dependent manner; they display no detectable transport of uracil, hypoxanthine, or uric acid at external concentrations of up to 0.1 mM. Both YgfO and YicE are inefficient in recognizing uric acid or xanthine analogues modified at position 8 of the purine ring (8-methylxanthine, 8-azaxanthine, oxypurinol, allopurinol), which distinguishes them from their fungal homologues UapA and Xut1.  相似文献   

9.
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H+ FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1–5 and TMS6–10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.  相似文献   

10.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.  相似文献   

11.
UapA, a uric acid-xanthine permease of Aspergillus nidulans, has been used as a prototype to study structure-function relationships in the ubiquitous nucleobase-ascorbate transporter (NAT) family. Using novel genetic screens, rational mutational design, chimeric NAT molecules, and extensive transport kinetic analyses, we show that dynamic synergy between three distinct domains, transmembrane segment (TMS)1, the TMS8-9 loop, and TMS12, defines the function and specificity of UapA. The TMS8-9 loop includes four residues absolutely essential for substrate binding and transport (Glu356, Asp388, Gln408, and Asn409), whereas TMS1 and TMS12 seem to control, through steric hindrance or electrostatic repulsion, the differential access of purines to the TMS8-9 domain. Thus, UapA specificity is determined directly by the specific interactions of a given substrate with the TMS8-9 loop and indirectly by interactions of this loop with TMS1 and TMS12. We finally show that intramolecular synergy among UapA domains is highly specific and propose that it forms the basis for the evolution of the unique specificity of UapA for uric acid, a property not present in other NAT members.  相似文献   

12.
13.
Nickel transport systems in microorganisms   总被引:8,自引:0,他引:8  
The transition metal Ni is an essential cofactor for a number of enzymatic reactions in both prokaryotes and eukaryotes. Molecular analyses have revealed the existence of two major types of high-affinity Ni2+ transporters in bacteria. The Nik system of Escherichia coli is a member of the ABC transporter family and provides Ni2+ ion for the anaerobic biosynthesis of hydrogenases. The periplasmic binding protein of the transporter, NikA, is likely to play a dual role. It acts as the primary binder in the uptake process and is also involved in negative chemotaxis to escape Ni overload. Expression of the nik operon is controlled by the Ni-responsive repressor NikR, which shows functional similarity to the ferric ion uptake regulator Fur. The second type of Ni2+ transporter is represented by HoxN of Ralstonia eutropha, the prototype of a novel family of transition metal permeases. Members of this family have been identified in gram-negative and gram-positive bacteria and recently also in a fission yeast. They transport Ni2+ with very high affinity, but differ with regard to specificity. Site-directed mutagenesis experiments have identified residues that are essential for transport. Besides these uptake systems, different types of metal export systems, which prevent microorganisms from the toxic effects of Ni2+ at elevated intracellular concentrations, have also been described. Received: 14 July / Accepted: 8 October 1999  相似文献   

14.
Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.  相似文献   

15.
16.
The relation of sequence with specificity in membrane transporters is challenging to explore. Most relevant studies until now rely on comparisons of present-day homologs. In this work, we study a set of closely related transporters by employing an evolutionary, ancestral-reconstruction approach and reveal unexpected new specificity determinants. We analyze a monophyletic group represented by the xanthine-specific XanQ of Escherichia coli in the Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2 (NAT/NCS2) family. We reconstructed AncXanQ, the putative common ancestor of this clade, expressed it in E. coli K-12, and found that, in contrast to XanQ, it encodes a high-affinity permease for both xanthine and guanine, which also recognizes adenine, hypoxanthine, and a range of analogs. AncXanQ conserves all binding-site residues of XanQ and differs substantially in only five intramembrane residues outside the binding site. We subjected both homologs to rationally designed mutagenesis and present evidence that these five residues are linked with the specificity change. In particular, we reveal Ser377 of XanQ (Gly in AncXanQ) as a major determinant. Replacement of this Ser with Gly enlarges the specificity of XanQ towards an AncXanQ-phenotype. The ortholog from Neisseria meningitidis retaining Gly at this position is also a xanthine/guanine transporter with extended substrate profile like AncXanQ. Molecular Dynamics shows that the S377G replacement tilts transmembrane helix 12 resulting in rearrangement of Phe376 relative to Phe94 in the XanQ binding pocket. This effect may rationalize the enlarged specificity. On the other hand, the specificity effect of S377G can be masked by G27S or other mutations through epistatic interactions.  相似文献   

17.
The human equilibrative nucleoside transporters hENT1 and hENT2 (each with 456 residues) are 40% identical in amino acid sequence and contain 11 putative transmembrane helices. Both transport purine and pyrimidine nucleosides and are distinguished functionally by a difference in sensitivity to inhibition by nanomolar concentrations of nitrobenzylmercaptopurine ribonucleoside (NBMPR), hENT1 being NBMPR-sensitive. Previously, we used heterologous expression in Xenopus oocytes to demonstrate that recombinant hENT2 and its rat ortholog rENT2 also transport purine and pyrimidine bases, h/rENT2 representing the first identified mammalian nucleobase transporter proteins (Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) J. Biol. Chem. 277, 24938-24948). The same study also revealed lower, but significant, transport of hypoxanthine by h/rENT1. In the present investigation, we have used the enhanced Xenopus oocyte expression vector pGEMHE to demonstrate that hENT1 additionally transports thymine and adenine and, to a lesser extent, uracil and guanine. Fluxes of hypoxanthine, thymine, and adenine by hENT1 were saturable and inhibited by NBMPR. Ratios of V(max) (pmol/oocyte · min(-1)):K(m) (mm), a measure of transport efficiency, were 86, 177, and 120 for hypoxantine, thymine, and adenine, respectively, compared with 265 for uridine. Hypoxanthine influx was competitively inhibited by uridine, indicating common or overlapping nucleobase and nucleoside permeant binding pockets, and the anticancer nucleobase drugs 5-fluorouracil and 6-mercaptopurine were also transported. Nucleobase transport activity was absent from an engineered cysteine-less version hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were mutated to serine. Site-directed mutagenesis identified Cys-414 in transmembrane helix 10 of hENT1 as the residue conferring nucleobase transport activity to the wild-type transporter.  相似文献   

18.
In fungi, uptake of salvageable purines is carried out by members of two evolutionarily distinct protein families, the Purine-Related Transporters (PRT/NCS1) and the AzgA-like Transporters. We carried out a comparative kinetic analysis of two prototypes of these transporter families. The first was Fcy21p, a herein characterized protein of Candida albicans, and the second was AzgA, a transporter of Aspergillus nidulans. Our results showed that: (i) AzgA and Fcy21p are equally efficient high-affinity, high-capacity, purine transporters, (ii) Fcy21p, but not AzgA, is an efficient cytosine and 5-fluorocytosine transporter, interacting with =O2 and C4-NH2 of the pyrimidine ring, (iii) the major interactions of AzgA and Fcy21p with the purine ring are similar, but not identical, involving in all cases positions 6 and 7, and for some substrates, positions 1 and 9 as well, and (iv) in AzgA, bulky groups at position N3 have a detrimental steric effect on substrate binding, while similar substitutions at C2 or N9 are fully or partially tolerated. In contrast, in Fcy21p, C2 and N9 bulky substitutions abolish substrate binding, while similar substitutions in N3 are fully tolerated. These results suggest that all fungal purine transporters might have evolved from a single ancestral protein, and show that fungal transporters use different substrate interactions compared to the analogous protozoan or mammalian proteins. Finally, results are also discussed in respect of the possibility of using fungal purine transporters as specific gateways for the development of targeted antifungal pharmacological therapies.  相似文献   

19.
Nucleobase ascorbate transporters (NATs), also known as Nucleobase:Cation-Symporter 2 (NCS2) proteins, belong to an evolutionary widespread family of transport proteins with members in nearly all domains of life. We present the biochemical characterization of two NAT proteins, NAT3 and NAT12 from Arabidopsis thaliana after their heterologous expression in Escherichia coli UraA knockout mutants. Both proteins were shown to transport adenine, guanine and uracil with high affinities. The apparent KM values were determined with 10.12 μM, 4.85 μM and 19.95 μM, respectively for NAT3 and 1.74 μM, 2.44 μM and 29.83 μM, respectively for NAT12. Competition studies with the three substrates suggest hypoxanthine as a further substrate of both transporters. Furthermore, the transport of nucleobases was markedly inhibited by low concentrations of a proton uncoupler indicating that NAT3 and NAT12 act as proton–nucleobase symporters. Transient expression studies of NAT-GFP fusion constructs revealed a localization of both proteins in the plasma membrane. Based on the structural information of the uracil permease UraA from E. coli, a three-dimensional experimentally validated homology model of NAT12 was created. The NAT12 structural model is composed of 14 TM segments and divided into two inverted repeats of TM1–7 and TM8–14. Docking studies and mutational analyses identified residues involved in NAT12 nucleobase binding including Ser-247, Phe-248, Asp-461, Thr-507 and Thr-508. This is the first study to provide insight into the structure–function of plant NAT proteins, which reveals differences from the other members of the NCS2 protein family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号