首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
基于器官生物量构建植株形态的玉米虚拟模型   总被引:31,自引:0,他引:31  
探讨了基于玉米器官生物量模拟其形态的方法,并应用2000年田间试验数据提取了玉米节间、叶鞘和叶片的形态构建参数。基于玉米虚拟模型生物量分配模块模拟的器官生物量积累和建立的形态构建方法与提取的参数,模拟了2001年玉米不同生长阶段的器官形态,模拟结果与田间试验数据吻合较好。应用本模型实现了玉米生长过程中植株各个器官形态变化以及植株高度、叶面积动态的模拟,并实现了植株形态的可视化。  相似文献   

2.
基于光合产物动态分配的玉米生物量模拟   总被引:1,自引:1,他引:0  
麻雪艳  周广胜 《生态学杂志》2016,27(7):2292-2300
光合产物分配是作物生长发育及生物量形成的关键环节,也是作物生长模拟的重要内容.本研究依据光合产物分配机理,结合玉米不同生长阶段的光合产物分配特点,构建了玉米光合产物分配模型.与WOFOST模型的CO2同化模块相结合,实现了对玉米各器官生物量动态的逐日模拟.利用锦州农田生态系统野外观测站5年的春玉米大田试验资料对模拟效果进行了验证.结果表明: 模型能解释总生物量变化的95.4%;对营养器官生物量变化的解释率达87.0%;对叶、根、茎生物量变化的解释率分别达85.3%,67.9%和76.5%;对穗生物量变化的解释率达87.5%.模型可实现玉米各器官的生物量动态的准确模拟.  相似文献   

3.
用于模拟土壤干旱胁迫对作物影响的模型分为两类,一是水分管理模型,此类模型并不模拟作物的生长发育,但可以用于灌溉管理;二是作物生长模拟模型,这类模型模拟作物生长的主要过程(如叶片生长、生物量的积累与分配等),通常以实际蒸腾与潜在蒸腾的比值估算土壤干旱胁迫对作物光合的影响,近年来发展的耦合模型将植物的碳同化、蒸腾、能量平衡以及气孔行为相耦合,使得土壤干旱胁迫对作物影响的模拟更具机理性。本文从不同模型模拟土壤干旱对作物影响的原理入手,阐述了水分管理模型(FAO水分生产函数模型)、作物生长模型(Aqua Crop模型、CERES-Maize模型、WOFOST模型、EPICphase模型、耦合模型)等具有代表性模型是如何模拟土壤干旱胁迫对作物生长发育和(或)产量影响的,提出了作物模型模拟土壤干旱胁迫影响时应着力解决的问题:完善干旱对作物物候的影响模拟;考虑花期不遇对作物产量影响的模拟;考虑后续持续影响的模拟机制;发展更加基于物理和生理过程的模型。提出:作物模型的发展还需要多领域如模型程序员、田间试验、植物生理学家的相互协同与发展,田间试验研究是作物模型发展不可或缺的数据来源与坚实基础。  相似文献   

4.
WOFOST模型在内蒙古河套灌区模拟玉米生长全程的适应性   总被引:1,自引:0,他引:1  
在河套灌区引入成熟的作物模型并进行适应性验证,可为进一步开展玉米生长监测及估产提供依据和基础。本文利用河套灌区巴彦淖尔农业气象试验站2012年玉米观测数据,结合当地气象、土壤资料对荷兰瓦赫宁根大学开发的WOFOST模型进行参数校准,并利用2013年玉米观测数据和2001—2011年农业气象观测资料对模型的区域适用性进行验证,获得了玉米的基本作物参数,包括各发育阶段比叶面积、最大CO2同化率、单叶光能利用率等。结果表明:通过校准作物参数,WOFOST模型可以较好地模拟LAI扩展、生物量的动态积累过程,LAI、各器官生物量及最终产量的模拟值与实测值吻合较好;独立样本检验中,模型模拟LAI的绝对偏差平均值为0.75,叶生物量、茎生物量、贮存器官生物量、地上部总生物量、产量的归一化均方根误差分别为33%、26%、17%、18%和13%;模拟2001—2011年玉米产量的归一化均方根误差为7.5%。参数校准后的模型对LAI、各器官生物量、产量的模拟结果较为符合实际,WOFOST模型能够适用于河套地区玉米生产过程生理、生态因子诊断、评估等。  相似文献   

5.
浙北地区不同种植方式下春玉米生长发育的动态模拟   总被引:1,自引:0,他引:1  
在MACROS模型基础上根据田间试验和文献资料组建了春玉米动态模拟模型,经验证模型能较好地反映不同种植方式下春玉米的生长发育过程,利用模型研究了浙北地区大麦/春玉米-晚稻种植制度中春玉米的播种日期对其生育期、产量等的影响,结果表明3月底至4月上旬是这一地区理想播种期;与单作相比,套作玉米应适当增加植株密度。  相似文献   

6.
APSIM模型对华北平原小麦-玉米连作系统的适用性   总被引:10,自引:0,他引:10  
王琳  郑有飞  于强  王恩利 《应用生态学报》2007,18(11):2480-2486
利用中国科学院禹城试验站1999—2001年大田试验及2002—2003年水分池处理数据进行APSIM模型参数的调试及验证,检验其对华北地区冬小麦-夏玉米连作系统的适用性.模型调试和验证结果表明:禹城1999—2000年大田试验的作物叶面积指数、生物量和土壤含水量模拟结果的平均误差分别为27.61%、24.59%和7.68%,2000—2001年分别为32.65%、35.95%和10.26%;2002—2003年高水分处理的作物叶面积指数和生物量模拟结果的平均误差分别为26.65%和14.52%,低水分处理分别为23.91%和27.93%.叶面积指数、生物量的模拟值和实测值拟合较好,除2000—2001年叶面积指数的决定系数为0.78外,其他处理均大于0.85.表明APSIM模型在模拟华北地区小麦-玉米连作系统的作物生物量和土壤水分方面具有较好的准确性,对叶面积指数模拟误差稍大.  相似文献   

7.
基于功能平衡假说的玉米光合产物分配动态模拟   总被引:2,自引:0,他引:2  
基于中国气象局沈阳大气环境研究所锦州农田生态系统定位观测站2004—2008年玉米各器官(根、茎和叶)生物量及相应环境因子的连续动态观测资料,检验了Friedlingstein模型在站点与日尺度上的适用性,并发展了基于施肥、土壤温度和土壤有效水分系数的玉米农田土壤有效养分系数模型,建立了基于功能平衡假说的日尺度的玉米光合产物的分配模型.结果表明:与Friedlingstein模型相比,本文所建的玉米光合产物分配模型能更好地模拟玉米光合产物分配动态,为准确模拟日尺度的玉米农田生态系统生产力提供了技术支持.  相似文献   

8.
系统地探讨了玉米地膜制种促熟增产的作物生理学机理.结果表明,玉米池膜制种可以改善土壤水温条件、增强植株根系活力和群体光合作用性能、促进植株生长发育和光合产物的积累与分配.为该技术应用提供了科学依据.  相似文献   

9.
以药用植物细叶远志Polygala tenuifolia Willd.为实验材料,研究了在大田种植实验条件下,长期调节中波紫外辐射(UV-B,280~320 nm)对细叶远志植株生长发育、植株形态、生物量分配的影响。结果表明,增加UV-B辐射远志叶面积下降37.4%,植株生长缓慢,叶片形态和生物量分配改变,而滤除紫外辐射,远志主根比显著下降,不利于药用部位的形成。该研究为远志栽培提供参考。  相似文献   

10.
森林生物量分配策略是全球变化背景下群落保持生产力的重要机制。温度和降水会影响森林生物量的分配格局。文章基于文献分析, 总结了增温、低温和降水对森林地上、地下生物量分配的影响机制, 以及温度和降水对森林生物量分配的交互作用, 并对未来温度和降水影响森林生物量分配的研究进行了展望, 提出该领域今后的研究重点为: (1) 加强生物量分配的生理生态学研究, 了解温度和水分影响树木器官生物量分配策略和周转速率的具体机制。(2) 综合运用模型模拟、试验测量和样地调查等方法, 因地制宜, 提高研究的准确性。(3) 增加温度和降水交互试验和降水控制试验以模拟各种可能出现的降水情况。(4) 室内模拟试验和野外定位试验相结合, 并加强在热带亚热带及高海拔森林的相关研究。  相似文献   

11.
12.
Kang M  Evers JB  Vos J  de Reffye P 《Annals of botany》2008,101(8):1099-1108
BACKGROUND AND AIMS: In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional-structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the 'target data'). METHODS: An experiment was conducted on spring wheat (Triticum aestivum, 'Minaret'), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). KEY RESULTS AND CONCLUSIONS: The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index.  相似文献   

13.
Dry Matter Partitioning in Tomato: Validation of a Dynamic Simulation Model   总被引:16,自引:1,他引:15  
HEUVELINK  E. 《Annals of botany》1996,77(1):71-80
A model for dynamic simulation of dry matter distribution betweenreproductive and vegetative plant parts and the distributionamong individual fruit trusses in glasshouse tomato, is validated.The model is part of the crop growth model TOMSIM and is basedon the hypothesis that dry matter distribution is regulatedby the sink strengths of the plant organs, quantified by theirpotential growth rates, i.e. the growth rates at non-limitingassimilate supply. Within the plant, individual fruit trussesare distinguished and sink strength of a truss is describedas a function of its development stage. Truss development rateis a function of temperature only. The same potential growthcurve, proportional to the number of fruits per truss, is adoptedfor all trusses. In a simple version of the model, vegetativeplant parts are lumped together as one sink with a constantsink strength. In a more detailed version, vegetative sink strengthis calculated as the sum of sink strengths of vegetative units(three leaves and stem internodes between two trusses). The model was validated for six glasshouse experiments, coveringeffects of planting date, plant density, number of fruits pertruss (pruning at anthesis), truss removal (every second trussremoved at anthesis), single- and double-shoot plants and atemperature experiment conducted in climate rooms at 17, 20or 23 °C. Daily increase in above-ground dry weight, averagedaily temperatures and number of set fruits per truss were inputsto the model. Both the simple and the more detailed model showedgood agreement between measured and simulated fraction of drymatter partitioned into the fruits over time. For the simpleversion of the model, the slope of the lines relating simulatedto measured fraction partitioned into the fruits (16 data sets),varied between 0.92 and 1.11, on average it was 1.04, implying4% over-estimation for this fraction. For the detailed modelthese numbers were slightly better: 0.89, 1.08 and 1.01, respectively.The temperature experiment revealed no important direct influenceof temperature on the ratio between generative and vegetativesink strength. Simulated truss growth curves showed reasonableagreement with the measurements, although both models over-estimated(17% on average) final dry weight of the lower trusses (truss1 –3) on a plant. Modelling dry matter partitioning basedon sink strengths of organs is promising, as it is a general,dynamic and flexible approach, showing good agreement betweenmeasurements and simulation for a range of conditions. Applicabilityof the model is, however, still limited as long as the numberof fruits per truss (flower and /or fruit abortion) is not simulated,as this is a major feedback mechanism in plant growth. Dry matter distribution; sink strength; glasshouse; model; partitioning; simulation; temperature; tomato; TOMSIM; validation  相似文献   

14.
A Simulation Model for Dry Matter Partitioning in Cucumber   总被引:22,自引:0,他引:22  
A dynamic model is developed for the simulation of the dailydry matter distribution between the generative and vegetativeplant parts and the distribution among individual fruits ingreenhouse cucumber. The model is based on the hypothesis thatdry matter partitioning is regulated by the sink strengths ofthe plant organs. The sink strength of an organ is defined hereas its potential growth rate, i.e. the growth rate at non-limitingassimilate supply. The sink strength of each individual fruitis described as a function of its temperature sum after anthesisand the actual temperature, that of the vegetative plant partsas a function of actual temperature only. The formation rateof non-aborting fruits is essentially a function of the source/sinkratio. Model results agreed well with the measured fluctuating distributionof dry matter between fruits and vegetative parts. The measuredeffects of three intensities of fruit removal were also simulatedsatisfactorily. When simulating the partitioning among individualfruits the final fruit size was simulated quite well. However,the growth rate of young fruits was usually overestimated andthat of old fruits underestimated, because of dominance amongfruits. This phenomenon could be accounted for by incorporatingpriority functions into the model. Finally, a sensitivity analysisof the model was performed to investigate the effects of someclimatic factors, manipulations of the number of fruits on aplant and model parameters on dry matter distribution. Strategiesto manipulate the dry matter distribution are discussed.Copyright1994, 1999 Academic Press Cucumber, Cucumis sativus (L.), dry matter distribution, fruit growth, partitioning, simulation model, source-sink  相似文献   

15.
HEUVELINK  E. 《Annals of botany》1999,83(4):413-422
A dynamic simulation model for tomato crop growth and development,TOMSIM, is evaluated. Potential crop growth and daily crop grossassimilation rate (Pgc,d) is computed by integration of leafassimilation rates over total crop leaf area throughout theday. Crop growth results fromPgc,dminus maintenance respirationrate (Rm), multiplied by the conversion efficiency. Dry matterdistribution is simulated, based on the sink strength of theplant organs, which is quantified by their potential growthrate. Within the plant, individual fruit trusses and vegetativeunits (three leaves and stem internodes between two trusses)are distinguished. Sink strength of a truss or a vegetativeunit is described as a function of its developmental stage.In this paper, emphasis is on the interactions between the twosubmodels of, respectively, dry matter production and dry matterdistribution. Sensitivity analysis showed that global radiation,CO2concentration, specific leaf area (SLA) and the developmentalstage of a vegetative unit at leaf pruning had a large influenceon crop growth rate, whereas temperature, number of fruits pertruss, sink strength of a vegetative unit and plant densitywere less important. Leaf area index (LAI) was very sensitiveto SLA and the developmental stage of a vegetative unit at leafpruning. Temperature did not influence the simulated Rm, asincreased respiration rate per unit of biomass at higher temperatureswas compensated by a decrease in biomass. The model was validatedfor four glasshouse experiments with plant density and fruitpruning treatments, and on data from two commercially growncrops. In general, measured and simulated crop growth ratesfrom 1 month after planting onwards agreed reasonably well,average overestimation being 12%. However, crop growth ratesin the first month after planting were overestimated by 52%on average. Final crop dry mass was overestimated by 0–31%,due to inaccurate simulation of LAI, resulting partly from inaccurateSLA prediction, which is especially important at low plant densityand in a young crop.Copyright 1999 Annals of Botany Company Crop growth, dry matter production, glasshouse, leaf area,Lycopersicon esculentum, partitioning, simulation model, tomato, TOMSIM.  相似文献   

16.
Over-expressing an amino acid permease in Vicia narbonensis seeds increases sink strength for N that is evident from the higher seed protein content and seed weight. Here, the effect of increased seed sink strength of line AAP-12 on growth, development, and on whole plant carbon and nitrogen uptake and partitioning is analysed. AAP-12 plants have a prolonged growth period. Accumulation and partitioning of dry matter and N in leaves, stems, and pods are higher whereas remobilization to the seeds is delayed, indicating that the switch from growth to reserve allocation and remobilization is delayed. Measuring uptake and allocation of (15)N-ammonia applied via the roots revealed a higher and longer label uptake period during maturation. Measuring whole plant carbon fixation and allocation after (13)C labelling shows higher levels at maturation, particularly in seeds, indicating higher seed sink strength for C and increased allocation into maturing seeds. Levels of cytokinins were dramatically increased in AAP-12 seeds indicating its role in nitrogen-mediated growth stimulation. AAP-12 seeds have higher natural abundances for (13)C indicating increased C fixation via PEP carboxylase in order to meet the higher demand of carbon acceptors for amino acid synthesis. In summary, increased seed sink strength for N in AAP-12 stimulates seed growth, but also that of vegetative organs, which finally leads to a higher ratio of vegetative to seed biomass at maturity and thus a lower harvest index. Therefore, the increased N uptake due to higher seed demand of AAP-12 is partly compensated by growth stimulation of vegetative organs.  相似文献   

17.
Here we present a functional-structural plant model that integrates the growth of metamers into a growing, three-dimensional tree structure, and study the effects of different constraints and strategies on tree performance in different canopies. The tree is a three-dimensional system of connected metamers, and growth is defined by the flush probability of metamers. Tree growth was simulated for different canopy light environments. The result suggest that: the constraints result in an exponential, logistic and decay phase; a mono-layered-leaf crown results from self-shading in a closed canopy; a strong apical control results in slender trees like tall stature species; the interaction between weak apical control and light response results in a crown architecture and performance known from short stature species in closed forest; correlated leaf traits explain interspecific differences in growth, survival and adult stature. The model successfully unravels the interaction effects of different constraints and strategies on tree growth in different canopy light environments.  相似文献   

18.
BARLOW, P. W., 1989. Meristems, metamers and modules in the development of shoot and root systems . Root and shoot systems are hierarchical organizations whose levels are represented, in part, by cells and meristems. Meristems produce modules which in turn construct the architectural model. The latter is species specific and its structure depends on the geometrical interrelationships between the modular elements. The place of the metamer within this hierarchical scheme is discussed. Metamers derive directly from meristem activity and are externally recognizable as reiterated sub-units of the module. Another sub-unit of module construction, the cellular complex, or merophyte, is also a product of meristem activity, but, in contrast to the metamer, it is an internal, rather than an external, anatomical feature. Being cellular, it increases the ‘span’ of the cell level rather than constituting a level in its own right. Although the physical boundaries of metamer and merophyte can overlap, or even coincide, the two units belong to different conceptual schemes of module structure: the metamer is defined from a ‘classical’ morphological viewpoint, whereas the merophyte derives from a cellular conception of plant structure. Both the merophyte and the metamer have a role in clarifying the understanding of plant development since both provide insights into the functioning of the meristems from which they are derived and the structure of the module to which they contribute. For example, modules which lack an obvious metameric construction can usefully be analysed in terms of their merophytic organization. This is particularly true of roots of lower plants. Here, the merophytes reflect the presence and activity of a specialized meristematic apical cell. On the other hand, modules of higher plants, which lack such apical cells, also lack clearly defined merophytes, but their shoots have obvious metamers which reflect the activity of the meristem as a whole. It should be possible to represent the development of modules from cells, via their intermediate sub-structures of meristems and metamers, by means of formal languages of automata theory. One of these, a graphical algorithm (Petri net), is applied in this developmental context.  相似文献   

19.
Carbon allocation within a plant depends on complex rules linking source organs (mainly shoots) and sink organs (mainly roots and fruits). The complexity of these rules comes from both regulations and interactions between various plant processes involving carbon. This paper presents these regulations and interactions, and analyses how agricultural management can influence them. Ecophysiological models of carbon production and allocation are good tools for such analyses. The fundamental bases of these models are first presented, focusing on their underlying processes and concepts. Different approaches are used for modelling carbon economy. They are classified as empirical, teleonomic, driven by source–sink relationships, or based on transport and chemical/biochemical conversion concepts. These four approaches are presented with a particular emphasis on the regulations and interactions between organs and between processes. The role of plant architecture in carbon partitioning is also discussed and the interest of coupling plant architecture models with carbon allocation models is highlighted. As an illustration of carbon allocation models, a model developed for peach trees, describing carbon transfer within the plant, and based on source–sink and Münch transport theory is presented and used for analyzing the link between roots, shoots and reproductive compartments. On this basis, the consequences of fruit load or plant pruning on fruit and vegetative growth can be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号