首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A drought event can cause entire crops to fail or yield loss. In order to study the effects of continuous drought on photosynthetic characteristics, yield, and water use efficiency (WUE) of winter wheat (Triticum aestivum L.), the winter wheat variety “Aikang 58” was selected as test material with controlling the water of the pot-planted winter wheat under a mobile rainout shelter. Based on foot planting and safe wintering, winter wheat was evaluated under different drought conditions, including light, moderate and severe drought at the jointing (B), heading (C), and filling (G) stages. The soil water content was controlled in a range of 60% to 70%, 50% to 60%, and 40% to 50% of the field capacity, respectively. In the experiment, there were 9 single-stage droughts, 3 three-stage droughts, and 1 test control (totaling 13 trials). The results are as follows: Under a single-stage drought, the change of net photosynthetic rate (Pn) and stomatal conductance (Gs) have similar trends, and they both decrease significantly with the severity of the drought. Under three-stage continuous droughts, the change curve of Gs shows a constant downward trend; the change curve of Pn showed a “valley shape,” and the minimum value of Pn appeared at the heading stage. All droughts will reduce the yield of winter wheat. Under the three-stage continuous drought conditions, except for light drought, moderate drought and severe drought will cause significant yield reduction, mainly due to lack of water at the jointing and heading stages. Continuous drought will reduce the WUE, and the difference will reach a significant level under moderate and severe drought. The present results suggested that when water resources are scarce, it is a better irrigation model to save water and achieve high grain yield by applying appropriate water stress (60%–70% FC) during the critical growth period of winter wheat.  相似文献   

2.
Deficit irrigation in winter wheat has been practiced in the areas with limited irrigation water resources. The objectives of this study were to (i) understand the physiological basis for determinations of grain yield and water-use efficiency in grain yield (WUE) under deficit irrigation; and (ii) investigate the effect of deficit irrigation on dry matter accumulation and remobilization of pre-anthesis carbon reserves during grain filling. A field experiment was conducted in the Southern High Plains of the USA and winter wheat (cv. TAM 202) was grown on Pullman clay loam soil (fine mixed thermic Torretic Paleustoll). Treatments consisted of rain-fed, deficit irrigation from jointing to the middle of grain filling, and full irrigation. The physiological measurements included leaf water potential, net photosynthetic rate (Pn), stomatal conductance (Gs), and leaf area index. The rain-fed treatment had the lowest seasonal evapotranspiration (ET), biomass, grain yield, harvest index (HI) and WUE as a result of moderate to severe water stress from jointing to grain filling. Irrigation application increased seasonal ET, and ET increased as irrigation frequency increased. The seasonal ET increased 20% in one-irrigation treatments between jointing and anthesis, 32-46% in two-irrigation treatments, and 67% in three- and full irrigation treatments. Plant biomass, grain yield, HI and WUE increased as the result of increased ET. The increased yield under irrigation was mainly contributed by the increased number of spikes, and seeds per square meter and per spike. Among the irrigation treatments, grain yield increased significantly but the WUE increased slightly as irrigation frequency increased. The increased WUE under deficit irrigation was contributed by increased HI. Water stress during grain filling reduced Pn and Gs, and accelerated leaf senescence. However, the water stress during grain filling induced remobilization of pre-anthesis carbon reserves to grains, and the remobilization of pre-anthesis carbon reserves significantly contributed to the increased grain yield and HI. The results of this study showed that deficit irrigation between jointing and anthesis significantly increased wheat yield and WUE through increasing both current photosynthesis and the remobilization of pre-anthesis carbon reserves.  相似文献   

3.
Inoue  T.  Inanaga  S.  Sugimoto  Y.  El Siddig  K. 《Photosynthetica》2004,42(1):99-104
We investigated the relative importance of pre-anthesis assimilates stored in plant parts, mainly in the stem, and post-anthesis photosynthesis to drought resistance in wheat (Triticum aestivum L.) cultivars Hongwangmai (drought resistant) and Haruhikari (drought sensitive) subjected to two soil moisture regimes: irrigated and non-irrigated. In the irrigated treatment, soil moisture was maintained near field capacity throughout the growing season, while in the non-irrigated treatment water was withheld from 81 d after sowing until maturity. Drought stress reduced grain yield of Hongwangmai and Haruhikari by 41 and 60 %, respectively. Remobilization of pre-anthesis assimilates to the grain (remobilization) was reduced by drought in Hongwangmai but increased in Haruhikari. The contribution of pre-anthesis assimilates to the grain decreased under non-irrigated treatment in Hongwangmai. However, under water stress, Hongwangmai maintained a higher net photosynthetic rate in the flag leaf than Haruhikari. These results indicated that maintenance of post-anthesis photosynthetic rate was related to drought resistance in Hongwangmai rather than to remobilization under drought stress.  相似文献   

4.
李诚永  蔡剑  姜东  戴廷波  曹卫星 《生态学报》2011,31(7):1904-1910
以扬麦9号为材料,研究花前渍水预处理对花后渍水逆境下小麦籽粒产量和品质的影响。结果表明,与未进行渍水预处理相比,花前渍水预处理提高了小麦植株对花后渍害的抗性,生物产量、收获指数和千粒重显著提高,进而显著提高了籽粒产量;花前渍水预处理显著提高花后氮素积累量及其对籽粒氮素的贡献率,降低了花前贮藏氮素运转量及其对籽粒氮素的贡献率,进而引起籽粒球蛋白含量提高,但显著降低了清蛋白、醇溶蛋白、谷蛋白和全蛋白质含量、以及干湿面筋含量和沉降值;花前渍水预处理还提高了籽粒直链淀粉和总淀粉含量和降落值,降低了支/直链淀粉比,显著提高了面粉峰值粘度、低谷粘度、崩解值、最终粘度、回冷值和峰值时间,但对糊化温度无显著影响。  相似文献   

5.
冬小麦种植模式对水分利用效率的影响   总被引:4,自引:0,他引:4  
齐林  陈雨海  周勋波  刘岩  高会军 《生态学报》2011,31(7):1888-1895
在同一种植密度下,设3种种植模式,包括25 cm等行距平作、"20+40"大小行平作和"20+40"沟播。研究了冬小麦沟播和平作种植对产量及水分利用效率的影响。结果表明,"20+40"沟播产量显著高于平作;叶片相对含水量(RWC)、水势(Ψw)和叶片水平水分利用效率随生育进程的推进呈整体下降趋势,其中,沟播处理RWCΨw和叶片水平水分利用效率的平均值均显著高于等行距和"20+40"平作处理;另外,"20+40"沟播还能明显提高冬小麦田土壤贮水量,减少总耗水量,从而提高水分利用效率。灌水增加了冬小麦产量和叶片相对含水量等各水分指标,降低了水分利用效率,减小了各种植模式间差异。"20+40"沟播在灌水135 mm条件下既保障产量又较等行距节水25%。由此表明,冬小麦"20+40"沟播可改善叶片水分状况,提高水分利用效率,增加作物产量。  相似文献   

6.
Plant Breeding and Drought in C3 Cereals: What Should We Breed For?   总被引:15,自引:0,他引:15  
Drought is the main abiotic constraint on cereal yield. Analysingphysiological determinants of yield responses to water may helpin breeding for higher yield and stability under drought conditions.The traits to select (either for stress escape, avoidance ortolerance) and the framework where breeding for drought stressis addressed will depend on the level and timing of stress inthe targeted area. If the stress is severe, breeding under stress-freeconditions may be unsuccessful and traits that confer survivalmay become a priority. However, selecting for yield itself understress-alleviated conditions appears to produce superior cultivars,not only for optimum environments, but also for those characterizedby frequent mild and moderate stress conditions. This impliesthat broad avoidance/tolerance to mild–moderate stressesis given by constitutive traits also expressed under stress-freeconditions. In this paper, we focus on physiological traitsthat contribute to improved productivity under mild–moderatedrought. Increased crop performance may be achieved throughimprovements in water use, water-use efficiency and harvestindex. The first factor is relevant when soil water remainsavailable at maturity or when deep-rooted genotypes access waterin the soil profile that is not normally available; the twolatter conditions become more important when all available wateris exhausted by the end of the crop cycle. Independent of themechanism operating, a canopy able to use more water than anotherwould have more open stomata and therefore higher canopy temperaturedepression, and 13C discrimination (13C) in plant matter. Thesame traits would also seem to be relevant when breeding forhot, irrigated environments. Where additional water is not availableto the crop, higher water-use efficiency (WUE) appears to bean alternative strategy to improve crop performance. In thiscontext 13C constitutes a simple but reliable measure of WUE.However, in contrast to lines performing better because of increasedaccess to water, lines producing greater biomass due to superiorWUE will have lower 13C values. WUE may be modified not onlythrough a decrease in stomatal conductance, but also throughan increase in photosynthetic capacity. Harvest index is stronglyreduced by terminal drought (i.e. drought during grain filling).Thus, phenological traits increasing the relative amount ofwater used during grain filling, or adjusting the crop cycleto the seasonal pattern of rainfall may be useful. Augmentingthe contribution of carbohydrate reserves accumulated duringvegetative growth to grain filling may also be worthwhile inharsh environments. Alternatively, extending the duration ofstem elongation without changing the timing of anthesis wouldincrease the number of grains per spike and the harvest indexwithout changing the amount of water utilized by the crop.  相似文献   

7.
Bancal MO  Robert C  Ney B 《Annals of botany》2007,100(4):777-789
BACKGROUND AND AIMS: Crop protection strategies, based on preventing quantitative crop losses rather than pest outbreaks, are being developed as a promising way to reduce fungicide use. The Bastiaans' model was applied to winter wheat crops (Triticum aestivum) affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (STB; Mycosphaerella graminicola) under a range of crop management conditions. This study examined (a) whether green leaf area per layer accurately accounts for growth loss; and (b) whether from growth loss it is possible to derive yield loss accurately and simply. Methods Over 5 years of field experiments, numerous green leaf area dynamics were analysed during the post-anthesis period on wheat crops using natural aerial epidemics of leaf rust and STB. Key Results When radiation use efficiency (RUE) was derived from bulk green leaf area index (GLAI), RUE(bulk) was hardly accurate and exhibited large variations among diseased wheat crops, thus extending outside the biological range. In contrast, when RUE was derived from GLAI loss per layer, RUE(layer) was a more accurate calculation and fell within the biological range. In one situation out of 13, no significant shift in the RUE(layer) of diseased crops vs. healthy crops was observed. A single linear relationship linked yield to post-anthesis accumulated growth for all treatments. Its slope, not different from 1, suggests that the allocation of post-anthesis photosynthates to grains was not affected by the late occurring diseases under study. The mobilization of pre-anthesis reserves completely accounted for the intercept value. Conclusions The results strongly suggest that a simple model based on green leaf area per layer and pre-anthesis reserves can predict both growth and yield of wheat suffering from late epidemics of foliar diseases over a range of crop practices. It could help in better understanding how crop structure and reserve management contribute to tolerance of wheat genotypes to leaf diseases.  相似文献   

8.
不同施肥水平对旱地冬小麦水分利用效率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
1987—1988年,研究了旱地施肥对冬小麦(Triticum aestivum cv.Shanhe No.6)水分利用效率的影响,初步探讨了“以肥调水”的生理机制。施肥不仅提高了旱地土壤含水量,更重要的是提高了土壤水势和土壤水的有效性,从而增加了有效水分利用。施肥增大旱地冬小麦绿叶面积,延缓叶片衰老,从而降低土壤蒸发,增加蒸腾用水潜势和光合潜势,但净同化率不一定提高。施肥增加旱地冬小麦总的水分利用(ET,即蒸散量)和蒸腾(T)用水,增加地上部生物产量,提高了经济产量和水分利用效率。施肥使冬小麦同时具有耗水和节水以抵御干旱的能力,对植株具有调节作用,使之更好地适应干旱环境。  相似文献   

9.
不同类型作物对干湿交替环境的反应   总被引:28,自引:1,他引:27  
山仑  苏佩 《西北植物学报》2000,20(2):164-170
通过对干湿交替环境下春小麦、马铃薯、大豆和玉米等作物的产量,水分利用效率及光合作用、蒸腾作用、气孔导度等生理变化的研究表明:(1)春小麦和马铃薯在干湿交替环境下可获得与充分供水相当的产量而它们的水分利用效率却显著提高,大豆减产幅度较大,玉米减产严重,其水分利用效率显著低于全湿处理;(2)浇水后各作物的光合速率、蒸腾速率和气孔导度都有所增加,但不同作物增加的幅度不同,就是同一作物各指标的增幅也不同;  相似文献   

10.
土壤干湿交替对小麦花前碳同化物分配的影响   总被引:1,自引:1,他引:0  
采用盆栽小麦试验,在开花前7d利用^14CO2光合标记,花后设置对照(A)、干湿交替5d循环(B)和10d循环(C)共3种水分处理。研究结果表明:约有19.0%~22.0%花前^14C同化物被转运到籽粒。在B、C两种干湿交替处理中,籽粒对花前^14C同化物动员量分别高出对照4.38%和3.02%,并且叶、鞘、茎等花前临时库中同化物输出比例相对高于正常供水的A处理。旗叶中可溶性糖和脯氨酸(Pro)含量对干湿反应敏感。灌浆后期,干湿交替处理的小麦旗叶中叶绿素(Chl)含量和光合速率与对照相比,相对减小,蒸腾速率和气孔导度也大大降低,并且二者变化趋势相一致。于湿交替供水,可部分补偿灌浆后期下旱导致光合不足、同化物减少的籽粒干物质的损失。  相似文献   

11.
In C3 plants, carbon isotope discrimination (△) has been proposed as an indirect selection criterion for grain yield. Reported correlations between △ and grain yield however, differ highly according to the analyzed organ or tissue, the stage of sampling, and the environment and water regime. In a first experiment carried out in spring wheat during two consecutive seasons in the dry conditions of northwest Mexico (Ciudad Obregon, Sonora), different water treatments were applied,corresponding to the main water regimes available to spring wheat worldwide, and the relationships between △ values of different organs and grain yield were examined. Under terminal (post-anthesis) water stress, grain yield was positively associated with △ in grain at maturity and in leaf at anthesis, confirming results previously obtained under Mediterranean environments. Under early (pre-anthesis) water stress and residual moisture stress, the association between grain △ and yield was weaker and highly depended on the quantity of water stored in the soil at sowing. No correlation was found between △ and grain yield under optimal irrigation. The relationship between △ and grain yield was also studied during two consecutive seasons in 20 bread wheat cultivars in the Ningxia region (Northern China), characterized by winter drought(pre-anthesis water stress). Wheat was grown under rainfed conditions in two locations (Guyuan and Pengyang) and under irrigated conditions in another two (Yinchuan and Huinong). In Huinong, the crop was also exposed to salt stress.Highly significant positive associations were found between leaf and grain △ and grain yields across the environments.The relationship between △ and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, the presence of salt in the soil, and the occurrence of irrigation before anthesis. These two experiments confirmed the value of △ as an indirect selection criterion for yield and a phenotyping tool under post-anthesis water stress (including limited irrigation).  相似文献   

12.

cv, cultivar
δ, deviation of C isotope composition from a standard
Δ, C isotope discrimination
WSC, water soluble carbohydrates

Steady-state labelling of all post-anthesis photosynthate of wheat was performed to assess the mobilization of pre-anthesis C (C fixed prior to anthesis) in vegetative plant parts during grain filling. Results were compared with estimates obtained by indirect approaches to mobilization of pre-anthesis C: ‘classical’ growth analysis and balance sheets of water soluble carbohydrates (WSC) and protein. Experiments were performed with two spring wheat cultivars grown with differential nitrogen fertilizer supply in 1991 and 1992. The fraction of pre-anthesis C mobilized in above-ground vegetative biomass ranged between 24 and 34% of total C present at anthesis. Treatment effects on mobilization of pre-anthesis C in total above-ground vegetative biomass were closely related (r2 = 0·89) to effects on mobilization of WSC-C plus protein-C (estimated as N mobilized × 3·15). On average, 81% of pre-anthesis C mobilization was attributable to the balance of pre-anthesis WSC (48%) and protein (33%) between anthesis and maturity. In roots, WSC and protein mobilization accounted for only 29% of the loss of pre-anthesis C. Notably, mobilization of pre-anthesis C was 1·4–2·6 times larger than the net loss of C from above-ground vegetative biomass between anthesis and maturity. This discrepancy was mainly due to post-anthesis C accumulation in glumes and stem. Post-anthesis C accumulation was related to continued synthesis of structural biomass after anthesis and accounted for a mean 15% of total C contained in above-ground vegetative plant parts at maturity. A close correspondence between net loss of C and mobilization of pre-anthesis C was only apparent in leaf blades and leaf sheaths. Although balance sheets of WSC and protein also underrated the mobilization of pre-anthesis C by ≈ 19%, they gave a much better estimate of pre-anthesis C mobilization than growth analysis.  相似文献   

13.
于2009—2011年通过田间试验,以高产中筋冬小麦品种济麦22为材料,设等行距平作、宽窄行平作、沟播3种种植方式,每种种植方式下设不灌水(W0)、灌拔节水(W1)、灌拔节水+开花水(W2)、灌拔节水+开花水+灌浆水(W3)4种灌溉处理(每次灌水量为60 mm),研究不同灌溉和种植方式对冬小麦生育后期旗叶光合特性和产量的影响.结果表明: 随冬小麦灌水量的增加,3种种植方式下小麦花后旗叶叶面积和光合速率均增加,光系统Ⅱ最大光化学效率和实际光化学效率也增加;与W0处理相比,各灌水处理提高了小麦籽粒产量,但水分利用效率(WUE)降低.同一灌溉条件下,与其他两种种植方式相比,沟播方式小麦花后旗叶光合速率、光系统Ⅱ最大光能转化效率和实际光化学效率均较高,且W2处理籽粒产量显著高于其他处理.统筹考虑冬小麦的籽粒产量和WUE,沟播结合灌拔节水+开花水是华北平原冬麦区较适宜的节水种植方式.  相似文献   

14.
不同生育时期干旱对冬小麦氮素吸收与利用的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
以抗旱性强的‘石家庄8号’和抗旱性弱的‘偃麦20’冬小麦(Triticum aestivum)为材料, 在田间遮雨棚条件下, 研究返青-拔节期、拔节-开花期和灌浆后期3个生育期不同干旱程度对冬小麦产量、氮素吸收、分配和利用的影响。结果表明, 在干旱条件下, 抗旱性强的‘石家庄8号’产量高于抗旱性弱的‘偃麦20’, 并且其3个生育时期轻度干旱均可提高产量。拔节-开花期干旱对两个冬小麦品种氮素的吸收和运转影响均最大, 其次为返青-拔节期, 而灌浆后期影响较小。不同生育期中度和重度干旱均降低了花前贮藏氮素向籽粒中的转移, 并且氮肥利用效率和生产率也较低, 而在返青-拔节和灌浆后期轻度干旱有利于营养器官的氮素向籽粒中转移, 提高了氮肥利用效率和生产率。在干旱条件下, 抗旱性强的‘石家庄8号’籽粒氮素积累对花前贮藏氮素再运转的依赖程度高, 而‘偃麦20’对花后氮素的积累和转移依赖较高。综合产量和氮素的转移特点, 在生产实践中, 返青-拔节期和灌浆后期要注意对小麦进行适度的干旱处理, 在拔节-开花期要保证冬小麦的充分灌溉, 从而有利于氮素的积累和分配。  相似文献   

15.
为探明灌溉对干旱区冬小麦(Triticum aestivum)产量、水分利用效率(WUE)、干物质积累及分配等的影响, 以甘肃河西走廊冬小麦适宜种植品种‘临抗2号’为材料进行了研究。在冬季灌水180 mm的条件下, 生育期以灌水量和灌水次数等共设置5个处理, 分别为: 拔节期灌水量165 mm (W1)、拔节期灌水量120 mm +抽穗期灌水量105 mm (W2)、拔节期灌水量105 mm +抽穗期灌水量105 mm +灌浆期灌水量105 mm (W3)、拔节期灌水量75 mm +抽穗期灌水量75 mm +灌浆期灌水量75 mm (W4)、拔节期灌水量105 mm +抽穗期灌水量75 mm +灌浆期灌水量45 mm (W5)。结果表明: 随着生育期的推进, 土壤有效含水量(AWC)受灌水次数及灌水量影响更加明显; W3、W4处理的土壤各层AWC在灌浆期均较高; 叶面积指数(LAI)下降慢, 延缓了生育后期的衰老; 生育后期干物质积累增加, 提高了穗粒数、千粒重和籽粒产量。籽粒产量以W3处理最高, 但W4具有最高的WUE, 且籽粒产量与W3无显著差异, 但W4较灌溉总量相同的W2和W5以及灌水量最少的W1具有明显的指标优势。W1、W2、W5处理灌浆期各层土壤AWC均较低, 花后LAI下降快, 干物质积累减少, 灌浆持续期缩短, 穗粒数和千粒重减少, 最终表现为籽粒产量和WUE下降。灌浆期水分胁迫可促进花前储存碳库向籽粒的再转运, 并随着干旱胁迫的加重而提高, 对籽粒产量起补偿作用; 水分胁迫提高了灌浆速率, 但缩短了灌浆持续期。相关性分析表明, 灌浆持续期、有效灌浆持续期、有效灌浆期粒重增加值和最大籽粒灌浆速率出现时间与千粒重和籽粒产量均呈正相关。综合考虑, 拔节、抽穗及灌浆期各灌溉75 mm是高产高WUE的最佳灌水方案。  相似文献   

16.
灌溉和种植方式对冬小麦耗水特性及干物质生产的影响   总被引:3,自引:1,他引:2  
董浩  陈雨海  周勋波 《生态学杂志》2013,24(7):1871-1878
于2008-2010年通过田间试验,以高产中筋冬小麦品种济麦22为材料,设等行距平作、宽窄行平作、沟播3种种植方式,每种种植方式下设不灌水(W0)、拔节水(W1)、拔节水+开花水(W2)、拔节水+开花水+灌浆水(W3)4种灌溉处理(每次灌水量为60 mm),研究不同灌溉和种植方式对冬小麦耗水特性及干物质积累与分配规律的影响.结果表明: 随灌水量的增加,3种植方式下农田总耗水量均增加,灌水量占总耗水量的比例也增加,而土壤贮水消耗量及其占总耗水量的比例显著降低;与W0处理相比,各灌水处理提高了开花后干物质的积累量、小麦籽粒产量,而水分利用效率(WUE)降低.同一灌溉条件下,与其他两种种植方式相比,沟播方式土壤贮水量消耗比例、籽粒产量和WUE均较高.综合考虑小麦的籽粒产量和WUE,沟播结合灌拔节水+开花水是华北平原冬麦区较适宜的节水种植方式.  相似文献   

17.
Winter wheat is threatened by drought in the Huang-Huai-Hai Plain of China, thus, effective water-saving irrigation practices are urgently required to maintain its high winter wheat production. This study was conducted from 2012 to 2014 to determine how supplemental irrigation (SI) affected soil moisture, photosynthesis, and dry matter (DM) production of winter wheat by measuring the moisture in 0–20 cm (W2), 0–40 cm (W3), and 0–60 cm (W4) soil profiles. Rainfed (W0) and local SI practice (W1, irrigation with 60 mm each at jointing and anthesis) treatments were designed as controls. The irrigation amount for W3 was significantly lower than that for W1 and W4 but higher than that for W2. The soil relative water content (SRWC) in 0–40 cm soil profiles at jointing after SI for W3 was significantly lower than that for W1 and W4 but higher than that for W2. W3 exhibited lower SRWC in 100–140 and 60–140 cm soil profiles at anthesis after SI and at maturity, respectively, but higher root length density in 60–100 cm soil profiles than W1, W2 and W4. Compared with W1, W2 and W4, photosynthetic and transpiration rates and stomatal conductance of flag leaves for W3 were significantly greater during grain filling, particularly at the mid and later stages. The total DM at maturity, DM in grain and leaves, post-anthesis DM accumulation and its contribution to grain and grain filling duration were higher for W3. The 1000-grain weight, grain yield and water use efficiency for W3 were the highest. Therefore, treatment of increasing SRWC in the 0–40 cm soil profiles to 65% and 70% field capacities at jointing and anthesis (W3), respectively, created a suitable soil moisture environment for winter wheat production, which could be considered as a high yield and water-saving treatment in Huang-Huai-Hai Plain, China.  相似文献   

18.
不同产量水平旱地冬小麦品种干物质累积和转移的差异分析   总被引:14,自引:0,他引:14  
旱地小麦高产栽培中品种起着重要作用,研究不同产量水平旱地冬小麦品种干物质累积和转移的差异,对黄土高原旱区作物高产稳产有重要意义。以9个旱地冬小麦品种为材料,通过田间试验研究了不同产量水平旱地冬小麦品种的生物量、花前花后干物质累积量、干物质转移量、转移率及转移干物质对籽粒的贡献率、叶面积、SPAD值以及光合速率的差异。结果表明,不同小麦品种的生物量、花前花后干物质累积量、干物质转移量、转移率及转移干物质对籽粒的贡献率均存在明显差异。与不施肥相比,高、中、低3个产量水平小麦品种在低养分投入时,成熟期生物量分别提高29%,22%和6%,高水平时分别提高46%,39%和23%,高产品种的生物量及其对养分投入的敏感程度明显高于低产品种。不同品种的花后干物质累积量随养分投入水平提高而增加,但花前营养器官中储存物质的转移量、转移率和对籽粒的贡献率却明显随之下降。功能叶(旗叶)在灌浆期高、中、低3个产量水平品种的SPAD值在低养分投入条件下分别为20.7、17.5和13.7;高养分投入时,分别为35、26.1和16.8。高产品种西农88的光合速率为6.0μmolCO.2m-.2s-1),中产和低产品种的平均光合速率分别为4.3μmolCO.2m-.2s-1和4.0μmolCO.2m-.2s-1,高产品种功能叶(旗叶)在灌浆期能保持较高的SPAD值和光合速率,因而花后能生产较多的干物质,但其花前干物质转移量、转移率及转移干物质对籽粒的贡献率均没有明显优势。可见,花后较高的叶绿素水平、光合速率和干物质累积是旱地小麦品种高产的重要原因。选择优良品种,采取合理的栽培措施,特别是通过养分调控保持花后具较高的干物质累积量是西北旱地进一步提高冬小麦产量的重要途径。  相似文献   

19.
不同肥料组合对冬小麦水分供需状况的研究   总被引:10,自引:1,他引:9  
采用D-饱和最优设计对半湿润易旱区冬小麦在各生育阶段土壤水分平衡状况以及不同肥料组合对冬小麦产量和水分利用效率的影响进行了分析和研究。结果表明,根据水量平衡法计算不同施肥条件下土壤供水量明显不同,以N、P、有机肥组合土壤供水占的比例最大为27%,单施氮肥利用降水补给占的比例最高为100%。整个生育期,单施氮肥冬小麦水分亏缺最严重,而磷肥与有机肥组合水分亏缺最小,N、P、有机肥组合能显著提高冬小麦产  相似文献   

20.
渭北旱塬小麦的耗水特性与抗旱增产措施   总被引:1,自引:0,他引:1       下载免费PDF全文
本文系根据1981—1982年,作者在陕西省蒲城县建立了33个试验点的实验研究,结果表明:小麦整个生活期的耗水量界于303—476mm之间,每亩产量约为45—333公斤,水分利用效率为0.38—1.15。说明了小麦产量与耗水量或水分利用效率两者之间是密切相关的,而这又和小麦早春再生长以前的幼苗生长率之间成正相关。在非灌溉条件下,小麦的生长与产量显著地依赖于雨季保存在根层的土壤有效水。为了在不同的水分条件下提高旱地小麦生产力,本文介绍了能够促使小麦的根茎向较深的土层发展的措施,以提高抗旱能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号