首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
以胶原蛋白过量沉积为主要特征的纤维化是临床肺部疾患常见的病理现象。该研究利用RT-PCR技术检测不同剂量TNF-α和IL-13对人肺成纤维细胞IL-13Rα1、IL-13Rα2和Ⅰ型胶原蛋白转录水平的影响;ELISA检测细胞培养上清sIL-13Rα2分泌量;羟脯氨酸法定量分析各组肺成纤维细胞胶原蛋白生成情况。结果发现:在实验剂量条件下,TNF-α和IL-13对人肺成纤维细胞IL-13Rα1的表达无显著影响;两者均能不同程度地上调IL-13Rα2的表达;与对照组相比,TNF-α对胶原蛋白的表达有下调作用,IL-13则无显著影响。  相似文献   

2.
目的:研究退变的椎间盘组织中IL-17表达的变化及其与椎间盘退变严重程度之间的关系。方法:收集退变椎间盘标本23例,正常椎间盘标本12例,通过免疫组织化学染色、免疫荧光染色、实时-定量PCR(RT-PCR)和酶联免疫吸附实验(ELISA)从细胞、蛋白和基因水平检测椎间盘组织中IL-17和孤独受体(retinoid-related orphan receptor,RORγt)的表达。结果:免疫组化染色显示退变椎间盘组织中IL-17阳性细胞比例较对照组明显增高,有统计学差异(P<0.05);免疫荧光染色显示退变椎间盘组织中Th17细胞含量明显增多(P<0.05);退变的椎间盘组织中IL-17和RORγt m RNA的相对表达量较对照组增加,有统计学差异(P<0.001),且两者之间呈显著正相关(r=0.6919,P<0.001);退变的椎间盘组织中IL-17的含量较对照组明显增加(P<0.01),且与椎间盘退变的严重程度呈正显著相关(r=0.4714,P<0.01)。结论:IL-17含量增加参与了腰椎间盘退变的病理过程,并且可能对椎间盘退变起促进作用。  相似文献   

3.
正常与退变椎间盘髓核和纤维环中生化成份的研究   总被引:3,自引:0,他引:3  
本工作测定了椎间盘的髓核和纤维环中的生化成份,结果提示在退变的椎间盘中,糖醛酸,总己糖胺、半乳糖胺均明显下降,而羟脯氨酸的含量明显增加。在退变的纤维环中尚有组成硫酸角质素的主要成份葡萄糖胺量的明显下降。在退变的髓核和纤维环中,总蛋白质含量呈增加趋势,水的含量呈下降趋势。提示退变椎间盘中蛋白多糖含量降低,组成改变及胶原蛋白的增加可能是诱发椎间盘突出症的物质基础。  相似文献   

4.
肝星状细胞(hepatic stellate cell,HSC)是肝纤维化发展过程中过量细胞外基质的主要来源。该研究首先利用MTT法检测IL-13实验剂量和时间条件下肝星状细胞增殖情况;然后运用RT-PCR技术检测IL-13对人肝星状细胞LX-2细胞系IL-13Rα1、IL-4Rα、TGF-β和Ⅰ型胶原蛋白转录水平的影响;最后通过羟脯氨酸法定量分析各组细胞培养上清液中的胶原蛋白含量。结果发现:IL-13能促进肝星状细胞的增殖;在不改变IL-13Rα1和IL-4Rα转录水平的同时,对TGF-β和Ⅰ型胶原蛋白mRNA的表达以及细胞总胶原蛋白含量的上调作用均呈现出较为明显的剂量和时间依赖性。  相似文献   

5.
以土壤为材料,用透明质酸和硫酸软骨素为唯一碳源富集分离菌株,通过BSA-乙酸平板显色法及比色定糖法进行筛选。从80份土壤中筛选出13株糖胺聚糖降解活性的菌株并对其进行了16S rDNA测序鉴定。结果表明,筛选到13株糖胺聚糖降解菌株均具有透明质酸酶和硫酸软骨素酶活性;获得8株尚未报导过的产糖胺聚糖降解酶活性菌株。本研究为开发新型的糖胺聚糖降解酶提供参考。  相似文献   

6.
为了提高本课题组前期构建的Ⅱ型胶原蛋白-透明质酸-硫酸软骨素的人工三维软骨支架对软骨细胞生长的促进作用,采用乳化交联法以壳聚糖为原料,加入细胞转化生长因子TGF-β1,并通过真空冷冻干燥技术制备了包裹TGF-β1的壳聚糖微球。然后分别将其与空白壳聚糖微球整合进软骨支架中,并接种小鼠软骨细胞ATDC-5,通过观察细胞生长状态来评价缓释微球在人工软骨支架中对软骨细胞生长是否具有促进作用。结果显示所制得的壳聚糖微球球体表面光滑,分散均匀,直径在100 nm左右,吸水率良好可达983.73%±4.38%,抗酶解作用较强,第28天时降解率仅达到51.0%±1.8%。由TGF-β1累积释放曲线可知TGF-β1在开始的24 h内释放最快,之后逐渐减慢,在120 h之后进入平台期,具有缓释效果。MTT试验以及荧光染色试验充分表明,由Ⅱ型胶原蛋白、透明质酸以及硫酸软骨素构建的三维软骨支架适合ATDC-5细胞的生长增殖,并且壳聚糖微球对TGF-β1的缓释能够显著促进细胞的生长。  相似文献   

7.
李俊杰  刘亚  邱玉金  田云虎  李坤 《生物磁学》2011,(14):2730-2733
目的:建立一压力可控型椎间盘退变模型,并探讨持久的脊柱负荷对椎间盘MMP-2表达的影响。方法:选用54只成年Wistar大鼠随机分为三组,分别模拟人类在站立(A组1.12N)、坐位直立(B组1.68N)、坐位前屈(C组3.08N)三种状态下椎间盘内的负荷情况,给予大鼠尾椎Co9/10椎间盘恒定压力加压,以相邻Co8/9椎间盘不加压作为对照(D组)。三组分别在3、7、14天后取受压及对照椎间盘标本,进行HE染色组织学观察及免疫组织化学分析,观察椎间盘退变情况及MMP-2在椎间盘组织中的含量变化。结果:随时间与压力的增加,椎间盘组织学评分与MMP-2表达增高(P〈0.05),MMP-2表达与椎间盘退变程度成正相关(r=0.870,P〈0.05)。结论:持久的脊柱负荷可引起椎间盘退变及MMP-2表达增加,MMP-2可能在椎间盘退变的过程中发挥重要作用。  相似文献   

8.
目的:建立一压力可控型椎间盘退变模型,并探讨持久的脊柱负荷对椎间盘MMP-2表达的影响.方法:选用54只成年Wistar大鼠随机分为三组,分别模拟人类在站立(A组1.12N)、坐位直立(B组1.68N)、坐位前屈(C组3.08N)三种状态下椎间盘内的负荷情况,给予大鼠尾椎Co9/10椎间盘恒定压力加压,以相邻Co8/9椎间盘不加压作为对照(D组).三组分别在3、7、14天后取受压及对照椎间盘标本,进行HE染色组织学观察及免疫组织化学分析,观察椎间盘退变情况及MMP-2在椎间盘组织中的含量变化.结果:随时间与压力的增加,椎间盘组织学评分与MMP-2表达增高(P<0.05),MMP-2表达与椎间盘退变程度成正相关(r=.870,P<0.05).结论:持久的脊柱负荷可引起椎间盘退变及MMP-2表达增加,MMP-2可能在椎间盘退变的过程中发挥重要作用.  相似文献   

9.
目的:探究Sox9用于治疗椎间盘退变的效果及调控机制。方法:将Ad-sox9和Ad-GFP各20μL分别转染至椎间盘退变兔的髓核组织中,转染后3、7、30、60天取材,采用免疫组化、免疫荧光和MRI等研究方法检测椎间盘髓核组织中II型胶原、蛋白多糖的表达情况,并分析对椎间盘退变的改善情况。结果:免疫组化染色显示sox9组中椎间盘髓核组织中II型胶原、蛋白多糖的表达明显升高,MRI显示sox9组椎间盘T2像信号有明显改善(P<0.05)。结论:体内转染腺病毒介导的sox9基因能够增加椎间盘内II型胶原和蛋白多糖的表达,并抑制椎间盘的退变进程。  相似文献   

10.
目的:近来研究发现,椎间盘退变与代谢性疾病,尤其是与糖尿病具有明显的相关性,但具体机制尚未有深入研究。本实验拟探究高糖微环境诱导椎间盘退行性变及其对NF-κB信号通路的影响,为进一步揭示高糖诱导椎间盘髓核细胞退变的机制提供研究基础,为延缓、阻止糖尿病椎间盘退变和治疗糖尿病相关腰痛疾病带来新的策略和方法。方法:1、高糖微环境与IVDD的关系:使用5.5 mmol/L、15 mmol/L、30 mmol/L、100 mmol/L不同浓度葡萄糖培养基培养髓核细胞,RT-PCR检测髓核细胞MMP-3、MMP-13、Aggrecan、CollagenII的表达;2、NF-κB信号通路参与高糖微环境调控IVDD进展:Bay11-7082抑制NF-κB信号通路激活,再使用RT-PCR、Western Blot检测髓核细胞MMP-3、MMP-13、Aggrecan、CollagenII和NF-κB的表达。结果:RT-PCR检测显示,在不同葡萄糖浓度下,Aggrecan、CollagenII随浓度升高表达减少,MMP-3、MMP-13随浓度升高表达增加。RT-PCR、Western Blot检测显示,使用Bay11-7082可使高糖组中Aggrecan、CollagenII表达增加,MMP-3、MMP-13表达减少。结论:高糖微环境诱导椎间盘退行性变发病,且NF-κB信号通路参与高糖微环境诱导椎间盘退行性变发病。  相似文献   

11.
 Type X collagen has so far not been reported to occur in human intervertebral discs. The objective of this study was therefore to investigate the occurrence of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Ninety intervertebral discs with adjacent endplates were excised in toto from individuals (0–86 years) without known spinal disease and were processed for routine decalcified histology. Appropriate slices of each disc were processed for immunohistochemistry using a type-spec ific, monoclonal antibody raised against human type X collagen. Each intervertebral disc was examined for macroscopic and histomorphological features of disc degeneration. Immunohistochemically, a positive specific type X staining was observed in the hypertrophic zone of the growth plate and only in the interstitial matrix of juvenile (<2 years) nucleus pulposus. In adult discs, type X collagen could be localized in conjunction with advanced disc degeneration and first occurred in the disc matrix (i.e., pericellular region) of a 47-year-old specimen. Positive type X staining of the disc matrix was more frequently found in senile (>70 years) discs with end stages of disc degeneration. This study provides the first evidence for the occurrence of type X collagen in human lumbar intervertebral discs and it appears that type X collagen is re-expressed in late stages of disc degeneration. Accepted: 24 April 1997  相似文献   

12.
腰椎间盘突出症是引起腰腿痛常见的原因。胶原作为椎间盘结构的主要成分,构成椎间盘的纤维框架,其类型与分布直接决定着椎间盘结构的强度和功能的稳定。本文利用溴化氰消化椎间盘胶原产生多肽,借助于梯度层析。SDS-PAGE及光密度定量扫描等对正常人椎间盘胶原进行了研究。结果表明:正常人椎间盘含Ⅰ型及Ⅱ型两种胶原,它们的分布呈明显而特征性的移行性变化:纤维环外层边缘以Ⅰ型胶原为主(83%),由外向内Ⅰ型胶原逐渐移行为Ⅱ型胶原,靠近髓核处以Ⅱ型胶原为主(72%);髓核中心含有Ⅱ型胶原。此为椎间盘的一个结构特性,以满足椎间盘的特殊功能的需要。  相似文献   

13.
不同月龄大鼠椎间盘退变与多效生长因子表达的关系   总被引:1,自引:0,他引:1  
目的观察不同月龄大鼠椎间盘的形态学变化并检测椎间盘中多效生长因子(pleiotrophin,PTN)的表达,探讨PTN与椎间盘退变的关系。方法取Wistar大鼠50只,以1,3,6,12,18个月龄不同分为5组,每组10只。采用苏木精-伊红染色观察椎间盘的形态学变化。采用SABC免疫组织化学方法,检测椎间盘中PTN的表达情况;结果(1)随着月龄的增加,椎间盘组织结构紊乱的程度逐渐增加,髓核内基质降解、正中出现空腔,胶原纤维增生、粗大、排列紊乱、并可见纤维断裂或缺失。(2)随着大鼠月龄的增加(1-12月龄),椎间盘细胞中PTN的表达有逐渐减低的趋势,但至18月龄,PTN表达又有所增加;6和12月龄组椎间盘细胞中PTN的表达显著低于1月龄组,而18月龄组PTN的表达显著高于12月龄组。同月龄组椎间盘细胞中,PTN在终板的表达高于髓核和纤维环,髓核和纤维环中PTN的表达未见明显差异。结论大鼠椎间盘结构随月龄增加发生退行性变,PTN参与了大鼠椎间盘的退变,并可能通过促进椎间盘组织中新生血管的形成,延缓椎间盘的退变。  相似文献   

14.
Alterations in the composition of intervertebral disc extracellular matrix, mainly collagen and proteoglycans, may cause changes in mechanical properties of the disc, leading to dysfunction, nerve root compression, and herniation with severe clinical manifestations. Matrix metalloproteinases may be involved in degradation by hydrolysing extracellular matrix components. Inhibitors of matrix metalloproteinases, in contrast, function in the maintenance of degradation control. In this study, we investigated: (i) whether the level of matrix degradation correlated with the duration of the symptomatic disease, (ii) roles of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) in intervertebral disc degeneration. Nucleus pulposus of intervertebral discs were obtained from 22 patients and analysed for collagen and proteoglycan contents, and pro-MMP-2, TIMP-2 levels. Collagen content was determined as hydroxyproline and proteoglycan content was measured as glycosaminoglycans. The loss in matrix components did not correlate with the duration of the degenerative disc disease. Pro-MMP-2 levels were higher at early stages of the degenerative disc disease (r = -0.495, P < 0.05). TIMP-2 levels were similar in all samples. Pro-MMP-2 and TIMP-2 levels negatively correlated in herniated discs samples (r = -0.855, P < 0.01). Pro- MMP-2 levels negatively correlated with the collagen content in herniated disc material. Our findings may suggest a silent period of active disease prior to symptomatic outcome during which irreversible matrix loss occurs. Involvement of other proteolytic enzymes at different stages of the disease should also be investigated to help to control the degradation cascade at relatively early stages of disc degeneration before the clinical onset of disease.  相似文献   

15.
Disc degeneration alters disc height and mechanics of the spinal column and is associated with lower back pain. In preclinical studies gel-like materials or resorbable polymer-based implants are frequently used to rebuild the nucleus pulposus, aiming at tissue regeneration and restoration of tissue function. To compare the outcome of tissue repair, freeze-dried resorbable polyglycolic acid–hyaluronan (PGA/HA) implants without any bioactive components or bioactivated fibrin (fibrin-serum) was used in a degenerated disc disease model in New Zealand white rabbits. Animals with partial nucleotomy only served as controls. The T2-weighted/fat suppression sequence signal intensity in the nuclear region of operated discs as assessed by magnet resonance imaging was reduced in operated compared to healthy discs, indicating loss of water and did not change from week 1 to month 6 after surgery. Quantification of histological and immunohistochemical staining indicated that the implantation of PGA/HA leads to significantly more repair tissue compared to nucleotomy only. Type II collagen content of the repair tissue formed after PGA/HA or fibrin-serum treatment is significantly increased compared to controls with nucleotomy only. The data indicate that intervertebral disc augmentation after nucleotomy has a positive effect on repair tissue formation and type II collagen deposition as shown in the rabbit model.  相似文献   

16.
The mechanism of intervertebral disc degeneration is still unclear, and there are no effective therapeutic strategies for treating this condition. miRNAs are naturally occurring macromolecules in the human body and have many biological functions. Therefore, we hope to elucidate whether miRNAs are associated with intervertebral disc degeneration and the underlying mechanisms involved. In our study, differentially expressed miRNAs were predicted by the GEO database and then confirmed by qPCR and in situ hybridization. Apoptosis of nucleus pulposus cells was detected by flow cytometry and Bcl2, Bax and caspase 3. Deposition of extracellular matrix was assessed by Alcian blue staining, and the expression of COX2 and MMP13 was detected by immunofluorescence, Western blot and qPCR. Moreover, qPCR was used to detect the expression of miR27a and its precursors. The results showed that miR27a was rarely expressed in healthy intervertebral discs but showed increased expression in degenerated intervertebral discs. Ectopic miR27a expression inhibited apoptosis, suppressed the inflammatory response and attenuated the catabolism of the extracellular matrix by targeting FSTL1. Furthermore, it seems that the expression of miR27a was up‐regulated by TNF‐α via the P38 signalling pathway. So we conclude that TNF‐α and FSTL1 engage in a positive feedback loop to promote intervertebral disc degeneration. At the same time, miR27a is up‐regulated by TNF‐α via the P38 signalling pathway, which ameliorates inflammation, apoptosis and matrix degradation by targeting FSTL1. Thus, this negative feedback mechanism might contribute to the maintenance of a low degeneration load and would be beneficial to maintain a persistent chronic disc degeneration.  相似文献   

17.
Human disc degeneration is associated with increased MMP 7 expression.   总被引:2,自引:0,他引:2  
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

18.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

19.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号