首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Early-stage human embryogenesis, such as implantation, gastrulation, and neurulation, are critical for successful pregnancy. For decades, our knowledge about these stages has been limited by the inaccessibility to such embryo specimens in vivo and the difficulty in rebuilding them in vitro. Although human embryos could be cultured in vitro beyond implantation, it remains challenging for the cultured embryos to recapitulate the continuous, coordinated morphogenesis and cytodifferentiation as seen in vivo. Stem cell-based embryo models, mainly derived from human pluripotent stem cells, are organized structures mimicking essential developmental processes in the early-stage human embryos. Despite their invaluable potentials, most embryo models are based on the self-organization of human pluripotent stem cells, which are limited in controllability, reproducibility, and developmental fidelity. Recently, the integration of bioengineered tools and stem cell biology has fueled a technological transformation towards programmable, highly complex, high-fidelity stem cell-based embryo models. Given its scientific and clinical significance, we present an overview of recent paradigm-shifting advances as well as historical perspectives regarding the past, present, and future of synthetic human embryology. Following the developmental roadmap of human embryogenesis, we critically review existing stem cell-based models for implantation, gastrulation, and neurulation, respectively. We highlight the limitations encountered by autonomous self-organization strategy and discuss the concept and application of guided cell organization as a game-changer for innovating next-generation embryo models. Future endeavors in synthetic human embryology should rationally leverage both the self-organizing power and programmable microenvironmental guidance to secure faithful reconstructions of the hierarchical orders of human embryogenesis in vitro.  相似文献   

3.
4.
Surface proteins in the first embryonic stages (8–32 cells, morula, blastula, early and late gastrula) of Pleurodeles waltlii were selectively labelled by 125I using lactoperoxidase and glucose/glucose oxidase. Iodination was effected either on non-dissociated embryos or after their dissociation with EDTA. On the outer surface of non-dissociated embryos the two-dimensional electrophoresis revealed only three groups of 125I-labelled proteins which did not change during all studied stages. Quite different results were obtained with the cells of dissociated embryos. In addition to the iodinated proteins of the embryonic outer surface seven major iodinated proteins were identified. These proteins originate from the regions of cell-cell contacts in intact embryo. Their two-dimensional pattern in dissociated cells changes between stages 8–32 cells and morula. The next important difference was observed during gastrulation, which corresponds in Pleurodeles waltlii to the first morphogenetic movements. Therefore the outside and inside cell surfaces of embryo are different already at stage 8–32 cells (and probably earlier), before the first step of morphogenesis. The changes of cell surface proteins at early embryonal development take place inside the embryo, in the regions of cell-cell interactions.  相似文献   

5.
Abstract

This paper describes classical experiments of experimental embryology which may be repeated at class level using the early embryos of Xenopus laevis. The experiments demonstrate the effects of lithium on the early development of the nervous system, and the use of hypertonic salt solutions to produce exogastrulation. Both experiments involve the removal of the jelly coats around the embryo, and for this purpose a rapid chemical method using a cysteine hydrochloride/papain solution is described. Both experiments are theoretically important: the effects of lithium are used as evidence for the existence of an anterior-posterior gradient in the early embryo, while exogastrulation provides a convenient system for interfering with the primary inductive effect of the chordo-mesoderm, necessary for ectodermal neuralization.

The procedure for obtaining fertile eggs from mature Xenopus specimens by injection of mammalian chorionic gonadotrophin is described.  相似文献   

6.
Ascidians were historically the first metazoans in which experimental embryology was carried out. These early works by Chabry and Conklin [Chabry, L., 1887. Embryologie normale et tératologique des Ascidie. Felix Alcan Editeur, Paris; Conklin, E., 1905. The organization and cell lineage of the ascidian egg. J. Acad., Nat. Sci. Phila. 13, 1], in particular, led to the idea that the developmental program of these animals was driven by the cell-autonomous inheritance of localised maternal determinants, rendered precise by the stereotyped pattern of invariant cell cleavages. Work in the past 20 years indeed identified several localised maternal determinants of the position of cleavage planes or of some early cell fates. The overwhelming majority of cells in the three germ layers, however, do not follow a cell-autonomous differentiation program. Instead, they respond to short-range signals, as described in this review. Careful analysis of cell-cell contacts suggests that a major function of the invariant position of cleavage plans, besides segregating competence factors, is to control the relative positions of inducing cells and those competent to respond. Surprisingly, while the cell lineage is very well conserved between the divergent species Halocynthia roretzi and Ciona intestinalis, the molecular nature of inducing signals can vary. The constraints on embryo anatomy thus appear stronger than those on the choice of individual regulatory molecules.  相似文献   

7.
This study represents a global survey of the times of the first appearance of the neuron-glia cell adhesion molecule (Ng-CAM) in various regions and on particular cells of the chick embryonic nervous system. Ng-CAM, originally characterized by means of an in vitro binding assay between glial cells and brain membrane vesicles, first appears in development at the surface of early postmitotic neurons. By 3 d in the chick embryo, the first neurons detected by antibodies to Ng-CAM are located in the ventral neural tube; these precursors of motor neurons emit well-stained fibers to the periphery. To identify locations of appearance of Ng-CAM in the peripheral nervous system (PNS), we used a monoclonal antibody called NC-1 that is specific for neural crest cells in early embryos to show the presence of numerous crest cells in the neuritic outgrowth from the neural tube; neither these crest cells nor those in ganglion rudiments bound anti-Ng-CAM antibodies. The earliest neurons in the PNS stained by anti-Ng-CAM appeared by 4 d of development in the cranial ganglia. At later stages and progressively, all the neurons and neurities of the PNS were found to contain Ng-CAM both in vitro and in vivo. Many central nervous system (CNS) neurons also showed Ng-CAM at these later stages, but in the CNS, the molecule was mostly associated with neuronal processes (mainly axons) rather than with cell bodies; this regional distribution at the neuronal cell surface is an example of polarity modulation. In contrast to the neural cell adhesion molecule and the liver cell adhesion molecule, both of which are found very early in derivatives of more than one germ layer, Ng-CAM is expressed only on neurons of the CNS and the PNS during the later epoch of development concerned with neural histogenesis. Ng-CAM is thus a specific differentiation product of neuroectoderm. Ng-CAM was found on developing neurons at approximately the same time that neurofilaments first appear, times at which glial cells are still undergoing differentiation from neuroepithelial precursors. The present findings and those of previous studies suggest that together the neural cell adhesion molecule and Ng-CAM mediate specific cellular interactions during the formation of neuronal networks by means of modulation events that govern their prevalence and polarity on neuronal cell surfaces.  相似文献   

8.
9.
Summary Cell adhesion was studied during primary embryonic induction. The disaggregation rate and reaggregation patterns were analysed in the ectoderm cells of various developing Cynopus gastrulae and neurulae. The neurectoderm cells disaggregated more slowly with gastrulation, and the neural plate cells of early neurula showed a lesser capacity for disaggregation. Although no differences in reaggregation were found between dorsal and ventral ectoderm at the early gastrula stage, there were significant differences between the induced neurectoderm and the non-induced ventral epidermal cells at the late gastrula stage. Neural plate cells of the early neurula stage were seen to form a chain-like reaggregate, but the ventral epidermal cells of the same embryo formed a cluster-like spherical reaggregate. Scanning electron microscope observations of reaggregates also showed significant differences in adhesive properties between induced neurectoderm and non-induced epidermal cells. The adhesion field of the induced neurectoderm cells was smooth, differing from the distinct ridges of the non-induced epidermal cells. These results suggest that changes in the cell adhesion system, resulting in the formation of a columnar cell shape, may occur immediately after a neural-inducing action.  相似文献   

10.
The effects of distant interactions (LRI) and culture air on the adhesion ofPseudomonas fluorescens cells were studied. OneP. fluorescens culture was found to diminish the adhesion of cells of another, glassscreened,P. fluorescens culture by 30% (in the absence o air exchange between cultures). This effect was interpreted to be due to penetrating LRI. Under the combined action ofLRI and culture air (the latter alone reduced cell adhesion by only several percent), the amount of unattached cells increased 2-to 30-fold (on the average, by a factor of nine). Such a great reduction of cell adhesion indicated the synergistic action ofLRI and culture air.  相似文献   

11.
Summary

Blastomere deletion experiments at the two- and four-cell stages were carried out on the embryo of the polyclad turbellarian Hoploplana inquilina to further examine the relationship between spiral cleavage and early embryonic determination in primitive spiralians. Deletion of one cell at the two-cell stage resulted in “half” larvae that were abnormal in body shape, lobe development, and behavior. Deletion of one cell at the four-cell stage produced less abnormal “three-quarter” larvae which were still underdeveloped in one of the quadrants. A 3:1 ratio of one-eyed to two-eyed larvae implies that deletion of any one of three blastomeres results in loss of an eye, with two constituting the eye lineage and the third controlling the development of two eyes. The results demonstrate that the polyclad embryo is determined early in development, though significant cell interactions occur during cleavage, and suggest that determinative development and quartet spiral cleavage are always associated and probably represent a primitive, strongly conserved evolutionary condition.  相似文献   

12.
13.
VE-cadherin: adhesion at arm's length   总被引:8,自引:0,他引:8  
VE-cadherin was first identified in the early 1990s and quickly emerged as an important endothelial cell adhesion molecule. The past decade of research has revealed key roles for VE-cadherin in vascular permeability and in the morphogenic events associated with vascular remodeling. The details of how VE-cadherin functions in adhesion became apparent with structure-function analysis of the cadherin extracellular domain and with the identification of the catenins, a series of cytoplasmic proteins that bind to the cadherin tail and mediate interactions between cadherins and the cytoskeleton. Whereas early work focused on the armadillo family proteins -catenin and plakoglobin, more recent investigations have identified p120-catenin (p120ctn) and a related group of armadillo family members as key binding partners for the cadherin tail. Furthermore, a series of new studies indicate a key role for p120ctn in regulating cadherin membrane trafficking in mammalian cells. These recent studies place p120ctn at the hub of a cadherin-catenin regulatory mechanism that controls cadherin plasma membrane levels in cells of both epithelial and endothelial origin. endothelial cell; cytoskeleton; -catenin; p120ctn; cell adhesion; vascular endothelial cadherin  相似文献   

14.
This comprehensive study of early embryology in Ceratopteris richardii combines light microscopy with the first ultrastructural evaluation of any pteridophyte embryo. Emphasis is placed on ontogeny of the foot and placental transfer cells. The embryology of C. richardii shares many similarities with that of other polypodiacious ferns while exhibiting distinctive division patterns. Formative embryonic stages have been reconstructed into three-dimensional models for ease of interpretation. The zygote divides perpendicular to the gametophyte plane and anterioposterior axis. This division establishes a prone embryological habit that maximizes rapid independent establishment of a leaf-root axis in a cordate gametophyte. After the formation of a globular eight-celled stage, initials of the first leaf, and root and shoot apical meristems are defined early by discrete formative divisions. Concomitantly, the foot expands and differentiates to transport nutrients from the gametophyte for the developing embryonic organs. Transfer cell wall ingrowth deposition begins in the gametophyte placental cells before the adjacent sporophyte cells just after the eight-celled stage. These observations provide an anatomical framework for future comparative developmental genetic studies of embryogenesis in free-sporing plants.  相似文献   

15.
Multicellular organisms arise from the generation of different cell types and the organization of cells into tissues and organs. Cells of metazoa display two main phenotypes, the ancestral epithelial state and the recent mesenchymal derivative. Epithelial cells are usually stationary and reside in twodimensional sheets. By contrast mesenchymal cells are loosely packed and can move to new positions, thereby providing a vehicle for cell rearrangement, dispersal and novel cell-cell interactions. Transitions between epithelial and mesenchymal states drive key morphogenetic events in the early vertebrate embryo, including gastrulation, germ layer formation and somitogenesis. The cell behaviors and molecular mechanisms promoting transitions between these two states in the early mouse embryo are discussed in this review.Key words: mouse embryo, EMT, MET, morphogenesis, gastrulation, somitogenesis, epiblast, mesoderm, endoderm, primitive streak, paraxial mesoderm  相似文献   

16.
Abstract

The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.  相似文献   

17.
18.
19.
Abstract

The present paper examines some biological and ultrastructural aspects of fertilization and early development of the embryo in Cytinus hypocistis, a parasitic plant belonging to the Rafflesiaceae. The probable functions of a mucilaginous substance contained in the ovary and embedding the numerous pollen tubes coming from the style are discussed.

It was ascertained that pollen tubes pass through the micropyle and enter a synergid pushing, their way through the nucellar cells that show swollen walls owing to a probable enzymatic action whose function is to facilitate pollen tube penetration. It was hypothesized that the secretion of such enzymes is attributable to the numerous pollen present in the ovary or entering the mycropyle.

Since, in all the ovules observed, synergid degeneration was never found before the arrival of the pollen tube, this degeneration was interpreted as being caused by the material disharged by the pollen tube, rather than being an essential prerequisite for pollen tube penetration into the synergid.

Pollen tube content was observed to be made up of an intensely electron-dense substance surrounding many lipidic globules and numerous polysaccharide vesicles that fuse with the pollen tube wall, clearly contributing to its growth.

The sequence of the first divisions of the developing embryo was followed and the extreme reduction of the embryo is confirmed.

In Cytinus hypocistis starch is totally absent from all the sells belonging to the female gamethophyte as well as to those belonging to the embryo, but lipidic globules are very frequent; it is therefore supposed that these bodies constitute good material for the nutrition of the zygote and early embryo.  相似文献   

20.
In this article, we show, using a mathematical multiscale model, how cell adhesion may be regulated by interactions between E-cadherin and β-catenin and how the control of cell adhesion may be related to cell migration, to the epithelial-mesenchymal transition and to invasion in populations of eukaryotic cells. E-cadherin mediates cell-cell adhesion and plays a critical role in the formation and maintenance of junctional contacts between cells. Loss of E-cadherin-mediated adhesion is a key feature of the epithelial-mesenchymal transition. β-catenin is an intracellular protein associated with the actin cytoskeleton of a cell. E-cadherins bind to β-catenin to form a complex which can interact both with neighboring cells to form bonds, and with the cytoskeleton of the cell. When cells detach from one another, β-catenin is released into the cytoplasm, targeted for degradation, and downregulated. In this process there are multiple protein-complexes involved which interact with β-catenin and E-cadherin. Within a mathematical individual-based multiscale model, we are able to explain experimentally observed patterns solely by a variation of cell-cell adhesive interactions. Implications for cell migration and cancer invasion are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号