首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
2.
Four long-term embryogenic lines of Asparagus officinalis were co-cultured with the hypervirulent Agrobacterium tumefaciens strain AGL1Gin carrying a uidA gene and an nptII gene. 233 embryogenic lines showing kanamycin resistance and -glucuronidase (GUS) activity were obtained. Transformation frequencies ranged from 0.8 to 12.8 transformants per gram of inoculated somatic embryos, depending on the line. Southern analysis showed that usually 1 to 4 T-DNA copies were integrated. Regenerated plants generally exhibited the same insertion pattern as the corresponding transformed embryogenic line. T1 progeny were obtained from crosses between 6 transformed plants containing 3 or 4 T-DNA copies and untransformed plants. They were analysed for GUS activity and kanamycin resistance. In three progenies, Mendelian 1:1 segregations were observed, corresponding to one functional locus in the parent transgenic plants. Southern analysis confirmed that T-DNA copies were inserted at the same locus. Non-Mendelian segregations were observed in the other three progenies. T2 progeny also exhibited non-Mendelian segregations. Southern analysis showed that GUS-negative and kanamycin-sensitive plants did not contain any T-DNA, and therefore inactivation of transgene expression could not be responsible for the abnormal segregations.  相似文献   

3.
4.
Two different types of T-DNA insert were found in tobacco plants transformed with Agrobacterium tumefaciens. High-expressing (H) types had one copy of the T-DNA at a locus and produced high expression of the transgene uidA, as measured by uidA RNA levels and -glucuronidase activity; low-expressing (L) types had inverted repeats of the T-DNA at a locus and produced low uidA expression. H-types from different transformants acted additively, and cross-fertilization between two different homozygous transformants with H-type inserts produced F1 plants with GUS activity that equalled the parents and individual F2 plants with 50%, 100%, 150% and 200% of parental values. However, the L-type inserts worked in trans to suppress uidA expression from H-type inserts when both were present in the same genome. Hence when a transformant homozygous for the L-type insert was crossed to one homozygous for the H-type, all plants in the F1 and F2 generations with both types of insert had low GUS activity while F2 segregants that only had the H-type inserts had high GUS activity again. Suppression of the H-type gene was associated with increased methylation of the insert. Particle acceleration was used to introduce further copies of uidA into tissues of the transformants. Regardless of the promoter used, those plants with endogenous L-type inserts showed none of the distinct loci of GUS activity readily visible in material with no inserts, showing that L-type inserts could suppress not only the uidA expression of genomic homologues, but also of copies added in vitro.  相似文献   

5.
6.
Monascus ruber, a red mold species, has been widely used in the fields of food and medicine. In this research, we transformed Monascus ruber spores using Agrobacterium tumefaciens as a tool for random insertional mutagenesis with the hygromycin phosphotransferase gene as the selected marker. Three types of mutants including citrinin-producing mutants, mutants with abnormal aerial hyphae and pigment change mutants were screened for molecular analysis. Southern blot analysis showed that more than 83.3% of transformants contained single T-DNA insertions. The genomic DNA segments of the transformants flanking the T-DNA could be amplified from their left borders with TAIL-PCR. Homologous comparison using the Blast tool showed that none of the isolated DNA sequences had any similarity to each other, suggesting that the T-DNA was randomly integrated into the fungal genome, which provided the hypothetical reason for the variant phenotypes of the transformants. The successful creation of transformants with a single T-DNA tag insertion may help us to clone functional genes related to the metabolism and differentiation of Monascus spp., which will greatly facilitate the molecular analysis of this important fungus and the improvement of strains at the genetic level.  相似文献   

7.
Vectors for transformation of higher plants mediated by Agrobacterium tumefaciens were modified so that one, two or three additional copies of the left border (LB) sequences were inserted close to the original LB of the T-DNA. A gene for -glucuronidase (gusA) was placed outside the T-DNA to monitor the transfer to plants of 'vector backbone' sequences. The expression of GUS in immature embryos of rice that had been co-cultivated with A. tumefaciens carrying these constructs was around one tenth of that with A. tumefaciens carrying an unmodified control vector. Between 88 and 127 of independent transformants were regenerated from rice tissues infected with A. tumefaciens carrying each of these vectors. The GUS expressors among the rice transformed with the modified vectors were much less frequent than ones among the control transformants, and rate of reduction in the ratio of transgenic plants that expressed GUS was higher than 93%. Detection of a fragment across the LB region by the polymerase chain reaction and the gusA gene by Southern hybridization correlated well with GUS expression. These results indicate that transfer of the 'vector backbone' from the control vectors resulted mainly from inefficient termination of formation of the transfer intermediate of the T-DNA and additional LB sequences effectively suppressed such transfer. This approach is simpler than the strategy to place a 'lethal gene' outside the T-DNA and will likely help produce 'clean' transformants efficiently.  相似文献   

8.
A new promoter trap vector was constructed based on the juxtaposition of T-DNA right border to coding sequence of GUS. The new vector pRN-1 carried an intron in the GUS coding region. Promoter trap vectors pGKB5 and pRN-1 vectors were used to transform Arabidopsis ecotype Columbia using the floral dip transformation system. The transformants were selected on appropriate selection media and the primary transformants were confirmed by PCR using gene specific primers. Approximately 50 % of the T2 lines segregated for a 3:1 ratio indicating presence of T-DNA at single locus. Approximately 15% of the transformed lines showed expression of GUS. Morphological mutants for male sterility and dwarfism were also identified in the T2 population. A T-DNA tagged line was identified in T2 with GUS expression specifically in the floral parts. The number of T-DNA loci in this line was confirmed by Southern blot hybridization. T-DNA flanking region isolated from this line suggested insertions into chromosome 2 at two closely linked loci. The results demonstrate that the population generated can be used effectively to identify and characterize gene regulatory elements.  相似文献   

9.
A method is described for the high frequency transformation of carrot proembryogenic suspension culture cells by a non-oncogenic Ti-plasmid vector (pGV3850::1103) which carried a chimaeric kanamycin resistance gene (nos-NPT-II). Plants were regenerated efficiently from transformed material by somatic embryogenesis in the presence of kanamycin. Transformed tissues expressed readily detectable levels of both NPT-II and nopaline. NPT-II could be detected in total protein extracts by Western blotting. This analysis indicated that NPT-II was produced as a single, full length polypeptide. The T-DNA copy number in individually selected transformants was analysed by Southern blotting and ranged from 1–8 per diploid genome. The copy number and organization of the T-DNA was retained in plants regenerated from these transformants by somatic embryogenesis. These data suggested a clonal origin for the selected kanamycin resistant colonies. NPT-II expression levels appeared to be directly related to gene dosage.  相似文献   

10.
Transformants of Arabidopsis thaliana can be generated without using tissue culture techniques by cutting primary and secondary inflorescence shoots at their bases and inoculating the wound sites with Agrobacterium tumefaciens suspensions. After three successive inoculations, treated plants are grown to maturity, harvested and the progeny screened for transformants on a selective medium. We have investigated the reproducibility and the overall efficiency of this simple in planta transformation procedure. In addition, we determined the T-DNA copy number and inheritance in the transformants and examined whether transformed progeny recovered from the same Agrobacterium-treated plant represent one or several independent transformation events. Our results indicate that in planta transformation is very reproducible and yields stably transformed seeds in 7–8 weeks. Since it does not employ tissue culture, the in planta procedure may be particularly valuable for transformation of A. thaliana ecotypes and mutants recalcitrant to in vitro regeneration. The transformation frequency was variable and was not affected by lower growth temperature, shorter photoperiod or transformation vector. The majority of treated plants gave rise to only one transformant, but up to nine siblings were obtained from a single parental plant. Molecular analysis suggested that some of the siblings originated from a single transformed cell, while others were descended from multiple, independently transformed germ-line cells. More than 90% of the transformed progeny exhibited Mendelian segregation patterns of NPTII and GUS reporter genes. Of those, 60% contained one functional insert, 16% had two T-DNA inserts and 15% segregated for T-DNA inserts at more than two unlinked loci. The remaining transformants displayed non-Mendelian segregation ratios with a very high proportion of sensitive plants among the progeny. The small numbers of transformants recovered from individual T1 plants and the fact that none of the T2 progeny were homozygous for a specific T-DNA insert suggest that transformation occurs late in floral development.National Research Council of Canada Publication No. 38003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号