首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pollen assemblages recovered from a 5?m sediment core from the Vravron coastal marsh suggest a close correlation between vegetation development and human presence in Attica, and provide the first complete record of middle to late Holocene vegetation history. Correlation of pollen with archaeological data attempts to decode the man–environment relations of the past, within the context of the known climatic variability of the mid-late Holocene, in the vicinity of ancient Athens, an area of high historical significance. The pollen record of Vravron denotes a rather variable landscape where open Mediterranean evergreen pine woods alternated with maquis shrublands and grasslands, where human activities and climate have left their imprints on vegetation. During the last 5,000?years agricultural practices displayed several variations: cereal cultivation appears more intense during the Bronze Age, especially in the Mycenaean, while a spread of Olea is observed during Geometric to Classical times. The gradual abandonment of Olea cultivation evidenced in our pollen diagram came as a result of the displacement of human activities in the interior of Mesogaia in Hellenistic and Roman times. Olea and cereal cultivation intensification is observed again during the Mesobyzantine period. In the upper part of the core evidence of intense soil erosion and expansion of Vravron wetland was recorded, coinciding with the Little Ice Age climatic event and the introduction of Arvanites populations in the area.  相似文献   

2.
Palaeoecological analyses of raised peat bog deposits in northwest Europe show the naturalness, antiquity and robust response of these ecosystems to environmental changes from c. 7800 years ago to the present. A review of the techniques used to identify these long-term features is presented and the role of climate change, autogenic change processes and human disturbance is discussed. Millennial records of vegetation changes recorded in peat deposits demonstrate the response (often rapid) of raised peat bog vegetation to climatic changes during the mid-Holocene, Bronze Age/Iron Age transition and the Little Ice Age. Greenhouse warming scenarios exceed the reconstructed Holocene record of climatic changes (c. the last 11, 500 years), and bog-water tables may fall considerably. A combination of centennial palaeoecological analyses of bogs affected by human disturbance and experimental manipulations have been used as analogues for the potential response of raised peat bog vegetation to these changes. These show that possible greenhouse gas climate forcing scenarios may exceed the ability of Sphagnum- dominated raised peat bogs to respond to projected increases in summer temperature and decreases in summer precipitation. In combination with increasing N deposition, a loss of their Sphagnum-rich vegetation and increases in the abundance of vascular plants could occur on decadal timescales.  相似文献   

3.
Exploring the patterns and causes of land use changes in south-west Sweden   总被引:1,自引:0,他引:1  
To study the causes of agricultural declines in south-west Sweden, a multi-proxy study including pollen analysis, bog surface wetness indicators and aeolian sediment influx reconstructions was carried out on the Store Mosse Bog, situated on the coastal plain of Halland. Patterns of agricultural changes during the past 6,000 years from this study were compared to one additional site on the coastal plain (Undarsmosse Bog) and to four sites in the forested upland region. First, we compared land use activity on the coastal plain and in upland regions of south-west Sweden. Three periods with reduced agricultural activities were observed, primarily in records from the coastal plain. Next, the causes for these declines were studied by comparing land use indicators in the pollen records from the Store Mosse and Undarsmosse peat bogs to independent climatic reconstructions based on the same core material (past storm activity based on aeolian sediment influx onto the peat bogs; bog surface wetness reconstructed from organic bulk density measurements). Since the climatic reconstructions and pollen analysis were carried out on the same peat cores, a direct comparison between the timing of climatic events and land use changes was possible. Results indicate that climatic perturbations prior to ca. 1,000 years ago contributed to or possibly caused agricultural declines. The agricultural expansions near the Store Mosse and Undarsmosse bogs from 3000 to 2600 cal. yrs b.p. ended at the time when climatic proxy indicators recorded climatic instability (from ca 2600 to 2200 cal. yrs b.p.). The same sequence of events was recorded around 1500 cal. yrs b.p. and from 1200 to 1000 cal. yrs b.p., suggesting a climatic cause for these agricultural declines as well. The well-known climatic perturbations associated with the Little Ice Age, however, did not have a visible impact on agricultural activities. By this time, advances in land use knowledge and technology may have drastically diminished society’s sensitivity to climatic changes.  相似文献   

4.
近2000年来的地球环境变化日益受到人们的关注,许多替代指标被用来指示快速的气候变化。本文试图通过南海永暑礁泻湖微型软体动物丰度和分异度的研究及其与北半球温度异常的对比,来阐述微型软体动物对快速气候变化的响应。研究表明,软体动物丰度变化的三个高值和三个低值较好地对应于北半球温度异常,显示了微型软体动物丰度对快速气候变化的灵敏反应。尤其重要的是“小冰期”和“中世纪暖期”被证明在南海也发生过。这表明快速的气候变化事件也会影响到热带海区。研究还证实另一次温暖的气候事件发生在大约 850A.D.—680A.D.之间。文中对软体动物分异度与气候变化的关系也作了探讨,并表明软体动物丰度和分异度是指示气候变化的有用指标。  相似文献   

5.
Carbon sequestration by sediments and vegetated marine systems contributes to atmospheric carbon drawdown, but little empirical evidence is available to help separate the effects of climate change and other anthropogenic activities on carbon burial over centennial timescales. We used marine sediment organic carbon to determine the role of historic climate variability and human habitation in carbon burial over the past 5,071 years. There was centennial‐scale sensitivity of carbon supply and burial to climatic variability, with Little Ice Age cooling causing an abrupt ecosystem shift and an increase in marine carbon contributions compared to terrestrial carbon. Although land use changes during the late 1800s did not cause marked alteration in average carbon burial, they did lead to marked increases in the spatial variability of carbon burial. Thus, while carbon burial by vegetated systems is expected to increase with projected climate warming over the coming century, ecosystem restructuring caused by abrupt climate change may produce unexpected change in carbon burial whose variability is also modulated by land use change.  相似文献   

6.
Climate forecasts project a global increase in extreme weather events, but information on the consequences for ecosystems is scarce. Of particular significance for lakes are severe storms that can influence biogeochemical processes and biological communities by disrupting the vertical thermal structure during periods of stratification. An exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake. Wind speeds were among the most extreme on record. A suite of variables measured throughout the event consistently indicates that a cascade of processes pushed the clear-water lake into an exceptionally turbid state. Specifically, thermocline deepening by the storm-entrained cyanobacteria of a deep chlorophyll maximum located at about 8 m depth into the surface mixed layer. Released from light limitation, intense photosynthesis of the cyanobacteria boosted primary production, increased algal biomass, raised the pH and thus induced massive calcite precipitation to a level never observed within three decades of lake monitoring. As a consequence, water transparency dropped from 6.5 to 2.1 m, the minimum on record for 40 years, and the euphotic zone shrank by about 8 m for several weeks. These results show that cyanobacterial blooms not only are promoted by climate warming, but can also be triggered by extreme storms. Clear-water lakes developing a deep chlorophyll maximum appear to be particularly at risk in the future, if such events become more intense or frequent.  相似文献   

7.
Coastal lagoons provide an excellent basis for the study of processes controlling the evolution of a coastal zone. We examine the relative importance of these processes during the middle to late Holocene through a study of an 8.5 meter-long sediment record from the Albufera de Valencia (Spain). We combine sedimentological analyses with investigations into the palaeoecology, taphonomy and geochemistry (Mg/Ca, Sr/Ca, δ18O and δ13C) of ostracod valves in order to assess the effects of sea-level changes, storm events and effective moisture on the evolution of a Western Mediterranean coastal wetland. The late Pleistocene sediments represent a subaerial environment, which was followed by a hiatus in deposition. The first Holocene unit (8700–7500 calendar yr. BP) is composed of typical lagoon-barrier and backshore sediments, deposited when seawater intruded into the lake and the climate was arid. The upper part of the sequence (between 7500 and 3400 yr.) is characterized by two sedimentary units, which correspond to Holocene progradation phases and humid climate associated with an increased freshwater influx to the lake accompanied by several high-energy events (palaeostorms). Overall, the record shows that an arid climate prevailed in the western Mediterranean area between 8400 and 7600 yr. The main marine transgression and accompanying progradational phases occurred between 7000 and 3400 yr., which is confirmed by other studies of coastal evolution along the Mediterranean coast. The multiproxy reconstructions demonstrate that controls on sedimentation and palaeoecology in this Mediterranean coastal lagoon were complex.  相似文献   

8.
Climate‐related environmental and humanitarian crisis are important challenges in the Great Horn of Africa (GHA). In the absence of long‐term past climate records in the region, tree‐rings are valuable climate proxies, reflecting past climate variations and complementing climate records prior to the instrumental era. We established annually resolved multi‐century tree‐ring chronology from Juniperus procera trees in northern Ethiopia, the longest series yet for the GHA. The chronology correlates significantly with wet‐season (= .64, < .01) and annual (= .68, < .01) regional rainfall. Reconstructed rainfall since A.D. 1811 revealed significant interannual variations between 2.2 and 3.8 year periodicity, with significant decadal and multidecadal variations during 1855–1900 and 1960–1990. The duration of negative and positive rainfall anomalies varied between 1–7 years and 1–8 years. Approximately 78.4% (95%) of reconstructed dry (extreme dry) and 85.4% (95%) of wet (extreme wet) events lasted for 1 year only and corresponded to historical records of famine and flooding, suggesting that future climate change studies should be both trend and extreme event focused. The average return periods for dry (extreme dry) and wet (extreme wet) events were 4.1 (8.8) years and 4.1 (9.5) years. Extreme‐dry conditions during the 19th century were concurrent with drought episodes in equatorial eastern Africa that occurred at the end of the Little Ice Age. El Niño and La Niña events matched with 38.5% and 50% of extreme‐dry and extreme‐wet events. Equivalent matches for positive and negative Indian Ocean Dipole events were weaker, reaching 23.1 and 25%, respectively. Spatial correlations revealed that reconstructed rainfall represents wet‐season rainfall variations over northern Ethiopia and large parts of the Sahel belt. The data presented are useful for backcasting climate and hydrological models and for developing regional strategic plans to manage scarce and contested water resources. Historical perspectives on long‐term regional rainfall variability improve the interpretation of recent climate trends.  相似文献   

9.
Sediment cores from tributaries, marshes and the main stem of Chesapeake Bay were analyzed for paleoecological indicators of climate change and land use. Indicators include pollen and seeds of terrestrial and aquatic plants, diatoms, charcoal, nutrients, and trace metals. Two major events, one climatic and the other anthropogenic, occurred within the last millennium. The Medieval Climatic Anomaly and the Little Ice Age are recorded in Chesapeake sediments by terrestrial indicators of dry conditions for 200 years, beginning about 1000 years ago, followed by increases in wet indicators from about 800 to 400 years ago. There were no corresponding shifts in estuarine diatoms and seeds of submerged macrophytes. During the last few centuries following European settlement, deforestation and agriculture have resulted in the transport of large sediment and nutrient loads to estuarine waters. The terrestrial flora shifted from arboreal to herbaceous, and much of the estuarine benthic biota was replaced by pelagic species. These changes had a profound effect on the Chesapeake fishery. In assessing risks associated with climate change, it must be recognized that changes wrought by human activity are likely to influence effects of future climate change, in ways not evident from the fossil record.  相似文献   

10.
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.  相似文献   

11.
《Marine Micropaleontology》2006,60(2):113-129
The Tagus pro-delta (Portuguese Margin) and the Skagerrak (NE of the North Sea) are two marine systems controlled by atmospheric changes, which at present are mainly determined by fluctuations of the North Atlantic Oscillation (NAO). On the basis of diatom records from marine sediment cores, environmental changes (primary productivity and salinity) are reconstructed for the last 2000 years for both regions. These sites are investigated focusing on the regional response to changing NAO forcing.Both studied sites are characterized by sedimentation rates in the order of 0.12 cm/year and 0.47 cm/year for the most recent deposits off the Tagus pro-delta, allowing high-resolution paleoceanographic reconstructions (8.3 and 2.1 years represented per sample). The last 2000 years are a period covering in Europe the historical climatic periods known as the Dark Ages (DA), the Medieval Warm Period (MWP) and the Little Ice Age (LIA). In the Skagerrak, the cold periods of the DA and LIA are marked by diatom dissolution stages, whereas at the Tagus pro-delta, the DA were associated with increased diatom production and possible upwelling and the onset of the LIA corresponded to enhanced flow of the Tagus River. During the MWP, better diatom preservation in the Skagerrak, related to stronger advection of salty Atlantic waters, is paralleled by dominant upwelling conditions at the Tagus pro-delta. The two most intense upwelling periods at the Tagus pro-delta, at ∼ AD 600 and ∼ AD 900, correspond to a dissolution stage and a slight change in salinity in the Skagerrak, respectively.Although the comparison of the two study sites suggests a common forcing such as the NAO, the different inferred behaviors for each main climatic period in each region demonstrate that the NAO by its own is not sufficient to explain the climatic variability at a regional scale.  相似文献   

12.
The Baltic coast of Northern Poland is an interesting region for palaeoclimatic studies because of the mixed oceanic and continental climatic influences and the fact that the dominance of one or the other of these two influences might have changed over time. Also, unlike many more intensively studied regions of Europe, human impact in the region was rather limited until the 19th century. We present a 1200-year high-resolution record from Stążki mire, an ombrotrophic bog located 35 km from the Baltic Sea coast. Using testate amoebae, stable isotopes (δ13C) of Sphagnum stems, pollen, plant macrofossils and dendroecological analyses, our aims were to: 1) reconstruct the last millennium palaeoenvironment in the study site and its surroundings, 2) identify the major wet–dry shifts, 3) determine if those events correlate with climate change and human impact, 4) assess the resilience of the Baltic bog ecosystem following human impact, and 5) compare the palaeo-moisture signal from the Baltic coast with records from more oceanic regions. Two dry periods are inferred at AD 1100–1500 and 1650–1900 (–2005). The first dry shift is probably climate-driven as pollen record shows little evidence of human indicators. The second dry shift can be related to local peat exploitation of the mire. In the 20th century additional limited drainage took place and since ca. AD 1950 the mire has been recovering. From 1500 AD onwards all proxies indicate wetter condition. The beginning of this wet shift occurred during the Little Ice Age and may therefore be a climatic signal. The macrofossil data show that Sphagnum fuscum dominated the pristine mire vegetation but then declined and finally disappeared at ca. AD 1900. This pattern is comparable with the timing of extinction of Sphagnum austinii (= Sphagnum imbricatum) in the UK. This study illustrates the value of high-resolution multi-proxy studies of peat archives to assess the magnitude of anthropogenic land-use changes. This study presents the first direct comparison of testate amoebae and stable isotope data from the same core. The two proxies correlate significantly throughout the record and most strongly for the latter part of the record when most of the variability was recorded.  相似文献   

13.
The long-term history of Zeiraphera diniana Gn. (the larch budmoth, LBM) outbreaks was reconstructed from tree rings of host subalpine larch in the European Alps. This record was derived from 47513 maximum latewood density measurements, and highlights the impact of contemporary climate change on ecological disturbance regimes. With over 1000 generations represented, this is the longest annually resolved record of herbivore population dynamics, and our analysis demonstrates that remarkably regular LBM fluctuations persisted over the past 1173 years with population peaks averaging every 9.3 years. These regular abundance oscillations recurred until 1981, with the absence of peak events during recent decades. Comparison with an annually resolved, millennium-long temperature reconstruction representative for the European Alps (r=0.72, correlation with instrumental data) demonstrates that regular insect population cycles continued despite major climatic changes related to warming during medieval times and cooling during the Little Ice Age. The late twentieth century absence of LBM outbreaks, however, corresponds to a period of regional warmth that is exceptional with respect to the last 1000+ years, suggesting vulnerability of an otherwise stable ecological system in a warming environment.  相似文献   

14.
Precipitation over the last 3800 years has been reconstructed using modern pollen calibration and precipitation data. A transfer function was then performed via the linear method of partial least squares. By calculating precipitation anomalies, it is estimated that precipitation deficits were greater than surpluses, reaching 21% and <9%, respectively. The period from 50 BC to 800 AD was the driest of the record. The drought related to the abandonment of the Maya Preclassic period featured a 21% reduction in precipitation, while the drought of the Maya collapse (800 to 860 AD) featured a reduction of 18%. The Medieval Climatic Anomaly was a period of positive phases (3.8–7.6%). The Little Ice Age was a period of climatic variability, with reductions in precipitation but without deficits.  相似文献   

15.
K. Gajewski 《Plant Ecology》1987,68(3):179-190
Pollen diagrams from seven lakes with annually laminated sediments sampled at 40-year intervals are analyzed to isolate the climatic effects from other effects on the long-term dynamics of vegetation during the past 1000–2000 years along a transect from Maine to Minnesota. Principal components analysis is used to reduce the dimensionality of the pollen data. The pollen records from all lakes show long-term trends, medium frequency oscillations, and higher frequency fluctuations. The long-term trend is associated with the neoglacial expansion of the boreal forest. The mechanism causing this replacement is a change in frequency of air masses in the area. The medium-frequency oscillations are also associated with climate changes, the most recent of which is the ‘Little Ice Age’. The climate-related mechanism causing the medium-frequency changes may be changes in disturbance frequency. The higher frequency fluctuations may also be related to disturbance. This analysis of pollen diagrams into time scales of variation has enabled the separation of climate from other factors affecting vegetation dynamics. By comparing the principal components across a transect of sites it proved possible to interpret the climatic effects on vegetation at most sites and not only at range boundaries and ‘sensitive’ sites.  相似文献   

16.
Vulnerability to climate change, and particularly to climate extreme events, is expected to vary across species ranges. Thus, we need tools to standardize the variability in regional climatic legacy and extreme climate across populations and species. Extreme climate events (e.g., droughts) can erode populations close to the limits of species' climatic tolerance. Populations in climatic‐core locations may also become vulnerable because they have developed a greater demand for resources (i.e., water) that cannot be enough satisfied during the periods of scarcity. These mechanisms can become exacerbated in tree populations when combined with antagonistic biotic interactions, such as insect infestation. We used climatic suitability indices derived from Species Distribution Models (SDMs) to standardize the climatic conditions experienced across Pinus edulis populations in southwestern North America, during a historical period (1972–2000) and during an extreme event (2001–2007), when the compound effect of hot drought and bark beetle infestation caused widespread die‐off and mortality. Pinus edulis climatic suitability diminished dramatically during the die‐off period, with remarkable variation between years. P. edulis die‐off occurred mainly not just in sites that experienced lower climatic suitability during the drought but also where climatic suitability was higher during the historical period. The combined effect of historically high climatic suitability and a marked decrease in the climatic suitability during the drought best explained the range‐wide mortality. Lagged effects of climatic suitability loss in previous years and co‐occurrence of Juniperus monosperma also explained P. edulis die‐off in particular years. Overall, the study shows that past climatic legacy, likely determining acclimation, together with competitive interactions plays a major role in responses to extreme drought. It also provides a new approach to standardize the magnitude of climatic variability across populations using SDMs, improving our capacity to predict population's or species' vulnerability to climatic change.  相似文献   

17.
Large runoff, sediment, and nutrient exports from watersheds could occur due to individual extreme climate events or a combination of multiple hydrologic and meteorological conditions. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze–thaw episodes followed by intense winter (February) rainstorms can export very high concentrations and loads of suspended sediment and particulate organic carbon (POC) and nitrogen (PN) from mid-Atlantic watersheds in the US. Peak suspended sediment (> 5000 mg L?1), POC (> 250 mg L?1) and PN (> 15 mg L?1) concentrations at our 12 and 79 ha forested watersheds for the February rainfall-runoff events were highest on record and the fluxes were comparable to those measured for tropical storms. Similar responses were observed for turbidity values (> 400 FNU) at larger USGS-monitored watersheds. Much of the sediments and particulate nutrients likely originated from erosion of stream bank sediments and/or channel storage. Currently, there is considerable uncertainty about the contribution of these sources to nonpoint source pollution, particularly, in watersheds with large legacy sediment deposits. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze–thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems.  相似文献   

18.
We reconstructed the palaeoenvironmental conditions of the last ca. 8,000 years in the Tres Lagunas region of the Quimsacocha volcanic basin (ca. 3,800 m a.s.l.) in the southwestern Ecuadorian Andes. By means of a pollen and charcoal record, we analysed vegetation, fire, and climate history of this area, which is sensitive to climatic changes of both the Pacific as well as of the eastern Andes and Amazon region. Sediment deposits, pronounced increases of pollen and charcoal concentrations, and pollen taxa reflect warmer and drier conditions in the early to mid-Holocene (~8000 to 3900 cal. b.p.). During the late Holocene (2250 to −57 cal. b.p.), five warm and cold phases occurred at Quimsacocha. The most prominent cold phase possibly corresponds to the globally recognized Little Ice Age (LIA; ~600 to 100 cal. b.p.). The cold phase signal at Quimsacocha was characterized by a higher abundance of Poaceae, Iso?tes and Gentianella, which are favoured by cold and moist conditions. Frequent charcoal particles can be recorded since the early to mid-Holocene (~7600 b.p.). The high Andean tree species Polylepis underwent several phases of degradation and re-establishment in the basin, which could indicate the use of fire by pre-Columbian settlers to enhance the growth of preferred herb species. The Tres Lagunas record suggests that human populations have been influencing the environment around Quimsacocha since the last ca. 8,000 years.  相似文献   

19.
A 1100-year long record of lake ecosystem response to climate and catchment change with precise chronological control is reported. Diatom and pollen assemblages of an annually laminated (varved) sediment from a northern Swedish lake (Kassjön, Våsterbotten) were used as records of lake diatom communities and catchment vegetation. These data were compared with summer temperature estimates based on tree-ring records of the same geographical area to identify the effects of climate change and catchment disturbance on diatom assemblages in the lake. In a canonical ordination, 23% of the variability in the total diatom assemblages for the period AD1040–1804 was accounted for by changes in pollen data which reflect agricultural development in the catchment. Diatom species richness, however, exhibited a stronger relationship with summer temperature and, significantly, declined with the lower temperatures associated with the Little Ice Age minimum (early 17th century). Summer temperature accounted for 23% of the variability in diatom species richness 20 years later. The mechanism behind this time-lag is unclear, but may be related to catchment-mediated effects, given recent evidence for lags in the response of boreal-forest vegetation regeneration cycles to climatic variability. These results suggest that climate-related effects on lakes occurring over medium timescales can be resolved in lake sediments. Moreover, it is possible to identify these effects despite cultural-related signals, but as the latter become more extreme in the late 20th century the climate signal is obscured.  相似文献   

20.
Rapid population growth and economic development have led to increased anthropogenic pressures on the Tibetan Plateau, causing significant land cover changes with potentially severe ecological consequences. To assess whether or not these pressures are also affecting the remote montane‐boreal lakes on the SE Tibetan Plateau, fossil pollen and diatom data from two lakes were synthesized. The interplay of aquatic and terrestrial ecosystem response was explored in respect to climate variability and human activity over the past 200 years. Nonmetric multidimensional scaling and Procrustes rotation analysis were undertaken to determine whether pollen and diatom responses in each lake were similar and synchronous. Detrended canonical correspondence analysis was used to develop quantitative estimates of compositional species turnover. Despite instrumental evidence of significant climatic warming on the southeastern Plateau, the pollen and diatom records indicate very stable species composition throughout their profiles and show only very subtle responses to environmental changes over the past 200 years. The compositional species turnover (0.36–0.94 SD) is relatively low in comparison to the species reorganizations known from the periods during the mid‐ and early‐Holocene (0.64–1.61 SD) on the SE Plateau, and also in comparison to turnover rates of sediment records from climate‐sensitive regions in the circum arctic. Our results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem in our study area. Synergistic processes of post‐Little Ice Age warming, 20th century climate warming and extensive reforestations since the 19th century have initiated a change from natural oak‐pine forests to seminatural, likely less resilient pine‐oak forests. Further warming and anthropogenic disturbances would possibly exceed the ecological threshold of these ecosystems and lead to severe ecological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号