首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Recent sequencing of the Chinese hamster ovary (CHO) cell and Chinese hamster genomes has dramatically advanced our ability to understand the biology of these mammalian cell factories. In this study, we focus on the powerhouse of the CHO cell, the mitochondrion. Utilizing a high-resolution next generation sequencing approach we sequenced the Chinese hamster mitochondrial genome for the first time and surveyed the mutational landscape of CHO cell mitochondrial DNA (mtDNA). Depths of coverage ranging from ~3,319X to 8,056X enabled accurate identification of low frequency mutations (>1%), revealing that mtDNA heteroplasmy is widespread in CHO cells. A total of 197 variants at 130 individual nucleotide positions were identified across a panel of 22 cell lines with 81% of variants occurring at an allele frequency of between 1% and 99%. 89% of the heteroplasmic mutations identified were cell line specific with the majority of shared heteroplasmic SNPs and INDELs detected in clones from 2 cell line development projects originating from the same host cell line. The frequency of common predicted loss of function mutations varied significantly amongst the clones indicating that heteroplasmic mtDNA variation could lead to a continuous range of phenotypes and play a role in cell to cell, production run to production run and indeed clone to clone variation in CHO cell metabolism. Experiments that integrate mtDNA sequencing with metabolic flux analysis and metabolomics have the potential to improve cell line selection and enhance CHO cell metabolic phenotypes for biopharmaceutical manufacturing through rational mitochondrial genome engineering.  相似文献   

2.
The gradual accumulation of mitochondrial DNA (mtDNA) mutations is implicated in aging and may contribute to the accelerated aging phenotype seen with tobacco smoking and HIV infection. mtDNA mutations are thought to arise from oxidative damage; however, recent reports implicate polymerase γ errors during mtDNA replication. Investigations of somatic mtDNA mutations have been hampered by technical challenges in measuring low‐frequency mutations. We use primer ID‐based next‐generation sequencing to quantify both somatic and heteroplasmic blood mtDNA point mutations within the D‐loop, in 164 women and girls aged 2–72 years, of whom 35% were smokers and 56% were HIV‐positive. Somatic mutations and the occurrence of heteroplasmic mutations increased with age. While transitions are theorized to result from polymerase γ errors, transversions are believed to arise from DNA oxidative damage. In our study, both transition and transversion mutations were associated with age. However, transition somatic mutations were more prevalent than transversions, and no heteroplasmic transversions were observed. We also measured elevated somatic mutations, but not heteroplasmy, in association with high peak HIV viremia. Conversely, heteroplasmy was higher among smokers, but somatic mutations were not, suggesting that smoking promotes the expansion of preexisting mutations rather than de novo mutations. Taken together, our results are consistent with blood mtDNA mutations increasing with age, inferring a greater contribution of polymerase γ errors in mtDNA mutagenesis. We further suggest that smoking and HIV infection both contribute to the accumulation of mtDNA mutations, though in different ways.  相似文献   

3.
Penile cancer is a rare neoplasm that seems to be linked to socio-economic differences. Mitochondrial genome alterations are common in many tumors types and are reported as regulating oxidative metabolism and impacting tumorigenesis. In this study, we evaluate for the first time the mitochondrial genome in penile carcinoma (PeCa), aiming to evaluate heteroplasmy, mitochondrial DNA (mtDNA) mutational load and mtDNA content in Penile tumors. Using next generation sequencing (NGS), we sequenced the mitochondrial genome of 13 penile tumors and 12 non-neoplastic tissue samples, which allowed us to identify mtDNA variants and heteroplasmy. We further evaluated variant’s pathogenicity using Mutpred predictive software and calculated mtDNA content using quantitative PCR. Mitochondrial genome sequencing revealed an increase number of non-synonymous variants in the tumor tissue, along with higher frequency of heteroplasmy and mtDNA depletion in penile tumors, suggesting an increased mitochondrial instability in penile tumors. We also described a list of mitochondrial variants found in penile tumor and normal tissue, including five novel variants found in the tumoral tissue. Our results showed an increased mitochondrial genome instability in penile tumors. We also suggest that mitochondrial DNA copy number (mtDNAcn) and mtDNA variants may act together to imbalance mitochondrial function in PeCa. The better understanding of mitochondrial biology can bring new insights on mechanisms and open a new field for therapy in PeCa.  相似文献   

4.

Introduction

Hippocampal sclerosis is the most common lesion in patients with mesial temporal lobe epilepsy. Recently, there has been growing evidence on the involvement of mitochondria also in sporadic forms of epilepsy. In addition, it has been increasingly argued that mitochondrial dysfunction has an important role in epileptogenesis and seizure generation in temporal lobe epilepsy. Although mtDNA polymorphisms have been identified as potential risk factors for neurological diseases, the link between homoplasmy and heteroplasmy within tissues is not clear. We investigated whether mitochondrial DNA (mtDNA) polymorphisms are involved in a case report of a patient with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS).

Design

We report the whole genome mtDNA deep sequencing results and clinical features of a 36-year-old woman with MTLE-HS. We used pyrosequencing technology to sequence a whole mitochondrial genome isolated from six different regions of her brain and blood. To assess the possible role of mitochondrial DNA variations in affected tissues, we compared all specimens from different regions of the hippocampus and blood.

Results

In total, 35 homoplasmic and 18 heteroplasmic variations have been detected in 6 different regions of the hippocampus and in blood samples. While the samples did not display any difference in homoplasmic variations, it has been shown that hippocampus regions contain more heteroplasmic variations than blood. The number of heteroplasmic variations was highest in the CA2 region of the brain and accumulated in ND2, ND4 and ND5 genes. Also, dentate and subiculum regions of the hippocampus had similar heteroplasmic variation profiles.

Discussion

We present a new rare example of parallel mutation at 16223 position. Our case suggests that defects in mitochondrial function might be underlying the pathogenesis of seizures in temporal lobe epilepsy.  相似文献   

5.
For identification of somatic mitochondrial DNA (mtDNA) mutations, the mtDNA major noncoding region (D-loop) sequence in blood samples and carotid atherosclerosis plaques from patients with atherosclerosis was analyzed. Five point heteroplasmic positions were observed in 4 of 23 individuals (17%). Only in two cases could heteroplasmy have resulted from somatic mutation, whereas three heteroplasmic positions were found in both vascular tissue and blood. In addition, length heteroplasmy in a polycytosine stretches was registered at nucleotide positions 303–315 in 16 individuals, and also in the 16184–16193 region in four patients. The results suggest that somatic mtDNA mutations can occur during atherosclerosis, but some heteroplasmic mutations may appear in all tissues, possibly being inherited.  相似文献   

6.
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche''s 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.  相似文献   

7.
The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop) of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years) and their 62 grandchildren (mean age: 15 ± 4.1 years), the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old) mutations (homoplasia and heteroplasmy). It is possible that both of these situations (homoplasia and heteroplasmy) were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.  相似文献   

8.
胞质异质性——人类肿瘤组织线粒体基因突变的普遍现象   总被引:4,自引:0,他引:4  
为了探讨不同肿瘤组织中线粒体基因体细胞性突变的胞质异质性和同质性状态,利用32对重叠引物对149例肿瘤组织和匹配的正常组织的全线粒体基因进行PCR扩增,并同时进行时相温度梯度凝胶电泳扫描突变筛选,基因测序确定突变类型与异质状况。结果表明,不同肿瘤组织中线粒体基因体细胞性突变的异质率不同,口腔癌(65%)和食道癌(64%)具有较高的异质率,其次为乳腺癌(45.9%)。4种转换形式的发生频率Hm→Hm > Hm→Ht > Ht→Hm > Ht→Ht。碱基转换的主要转换形式为Hm→Hm,碱基颠换则以Hm→Ht。认为胞质异质性是人类肿瘤组织线粒体基因突变的普遍现象。Abstract: To explore the status of heteroplasmy and homoplasmy of Mitochondrial DNA somatic mutations in different tumors. DNA from 149 tumors and corresponding normal tissues were extracted and entire mitochondrial genome was amplified using 32 pairs of overlapping primers. The somatic mutations were screened by temporal temperature gradient gel electrophoresis and their heteroplasmic statute were identified by sequencing. The results showed that the incidence rate of heteroplasmy of mitochondrial DNA somatic mutations varies in different tumors. There is a high rate of heteroplasmic mutation in oral cancer (65%) and esophageal cancer (64%), followed by breast cancer (45%). The frequency of four transfer types is Hm (homoplasmy)→Hm (heteroplasmy) > Hm→Ht > Ht→Hm > Ht→Ht. The main transfer forms of transition and transversion mutations are Hm→Hm and Hm→Ht respectively. Heteroplasmy is a common phenomenon in mitochondrial DNA somatic mutations of human tumors.  相似文献   

9.
Determination of mitochondrial DNA (mtDNA) heteroplasmy for the diagnosis of patients with mitochondrial disorders is a difficult task due to the coexistence of wild-type and mutant genomes. We have developed a new method for genotyping and quantification of heteroplasmic point mutations in mtDNA based on the SNaPshot technology. We compared the data of this method with the widely used "last hot-cycle" PCR-RFLP method by studying 15 patients carrying mtDNA mutations. We showed that SNaPshot is an accurate, reproducible, and sensitive technique for the determination of heteroplasmic mtDNA mutations in different tissues from patients, and it is a promising system to be used in prenatal and postnatal diagnosis of mtDNA-associated disorders.  相似文献   

10.
Heteroplasmic nucleotide polymorphisms are rarely observed in wild animal mitochondrial DNA. The occurrence of such site heteroplasmy is expected to be extremely rare at nonsynonymous sites where the number of nucleotide substitutions per site is low due to functional constraints. This report deals with nonsynonymous mitochondrial heteroplasmy from two wild fish species, chum salmon and Japanese flounder. We detected an A/C nonsynonymous heteroplasmic site corresponding to putative amino acids, Ile or Met, in NADH dehydrogenase subunit-5 (ND5) region of chum salmon. The heteroplasmic site was at the 3rd position of 58th codon. As for Japanese flounder we detected a C/T nonsynonymous heteroplasmic site corresponding to putative amino acids, Leu or Pro, in ND4 region. The heteroplasmic site was at the 2nd position of 450th codon. We also verified heteroplasmy at these sites by sequencing cloned fragments.  相似文献   

11.
Mutations in mitochondrial DNA (mtDNA) may result in various pathological processes. Detection of mutant mtDNAs is a problem for diagnostic practice that is complicated by heteroplasmy – a phenomenon of the inferring presence of at least two allelic variants of the mitochondrial genome. Also, the level of heteroplasmy largely determines the profile and severity of clinical manifestations. Here we discuss detection of mutations in heteroplasmic mtDNA using up-todate methods that have not yet been introduced as routine clinical assays. These methods can be used for detecting mutations in mtDNA to verify diagnosis of “mitochondrial disease”, studying dynamics of mutant mtDNA in body tissues of patients, as well as investigating structural features of mtDNAs. Original data on allele-specific discrimination of m.11778G>A mutation by droplet digital PCR are presented, which demonstrate an opportunity for simultaneous detection and quantitative assessment of mutations in mtDNAs.  相似文献   

12.
Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.  相似文献   

13.
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.  相似文献   

14.

Background

Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases.

Methods

We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base).

Results

We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases.

Conclusions

We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.  相似文献   

15.
Synaptosome cybrids were used to confirm the presence of heteroplasmic mtDNA sequence variants in the human brain. Synaptosomes contain one to several mitochondria, and when fused to mtDNA-deficient (ρ°) mouse or human cell lines result in viable cybrid cell lines. The brain origin of mouse synaptosome cybrid mtDNAs was confirmed using sequence polymorphisms in the mtDNA COIII, ND3 and tRNAArg genes. The brain origin of the human synaptosome cybrids was confirmed using a rare mtDNA MboI polymorphism. Fusion of synaptosomes from the brain of a 35-year-old woman resulted in 71 synaptosome cybrids. Sequencing the mtDNA control region of these cybrid clones revealed differences in the number of Cs in a poly C track between nucleotide pairs (nps) 301 and 309. Three percent of the cybrid clones had mtDNAs with 10 Cs, 76% had nine, 18% had eight and 3% had seven Cs. Comparable results were obtained by PCR amplification, cloning and sequencing of mtDNA control regions directly from the patient’s brain tissue, but not when the control region was amplified and cloned from a synaptosome cybrid homoplasmic for a mtDNA with nine Cs. Thus, we have clonally recovered mtDNA control region length variants from an adult human brain without recourse to PCR, and established the variant mtDNAs within living cultured cells. This confirms that some mtDNA heteroplasmy can exist in human neurons, and provides the opportunity to study its functional significance.  相似文献   

16.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

17.
While mtDNA polymorphisms at single base positions are common, the overwhelming majority of the mitochondrial genomes within a single individual are usually identical. When there is a point-mutation difference between a mother and her offspring, there may be a complete switching of mtDNA type within a single generation. It is generally assumed that there is a genetic bottleneck whereby a single or small number of founder mtDNA(s) populate the organism, but it is not known at which stages the restriction/amplification of mtDNA subtype(s) occur, and this uncertainty impedes antenatal diagnosis for mtDNA disorders. Length polymorphisms in homopolymeric tracts have been demonstrated in the large noncoding region of mtDNA. We have developed a new method, T-PCR (trimmed PCR), to quantitate heteroplasmy for two of these tracts (D310 and D16189). D310 variation is sufficient to indicate clonal origins of tissues and single oocytes. Tissues from normal individuals often possessed more than one length variant (heteroplasmy). However, there was no difference in the pattern of the length variants between somatic tissues in any control individual when bulk samples were taken. Oocytes from normal women undergoing in vitro fertilization were frequently heteroplasmic for length variants, and in two cases the modal length of the D310 tract differed in individual oocytes from the same woman. These data suggest that a restriction/amplification event, which we attribute to clonal expansion of founder mtDNA(s), has occurred by the time oocytes are mature, although further segregation may occur at a later stage. In contrast to controls, the length distribution of the D310 tract varied between tissues in a patient with heteroplasmic mtDNA rearrangements, suggesting that these mutants influence segregation. These findings have important implications for the genetic counselling of patients with pathogenic mtDNA mutations.  相似文献   

18.
Mitochondrial disorders are by far the most genetically heterogeneous group of diseases, involving two genomes, the 16.6 kb mitochondrial genome and ~ 1500 genes encoded in the nuclear genome. For maternally inherited mitochondrial DNA disorders, a complete molecular diagnosis requires several different methods for the detection and quantification of mtDNA point mutations and large deletions. For mitochondrial disorders caused by autosomal recessive, dominant, and X-linked nuclear genes, the diagnosis has relied on clinical, biochemical, and molecular studies to point to a group of candidate genes followed by stepwise Sanger sequencing of the candidate genes one-by-one. The development of Next Generation Sequencing (NGS) has revolutionized the diagnostic approach. Using massively parallel sequencing (MPS) analysis of the entire mitochondrial genome, mtDNA point mutations and deletions can be detected and quantified in one single step. The NGS approach also allows simultaneous analyses of a group of genes or the whole exome, thus, the mutations in causative gene(s) can be identified in one-step. New approaches make genetic analyses much faster and more efficient. Huge amounts of sequencing data produced by the new technologies brought new challenges to bioinformatics, analytical pipelines, and interpretation of numerous novel variants. This article reviews the clinical utility of next generation sequencing for the molecular diagnoses of complex dual genome mitochondrial disorders.  相似文献   

19.
The purpose of this study was to identify novel mitochondrial deoxyribonucleic acid (mtDNA) mutations in a series of patients with clinical and/or morphological features of mitochondrial dysfunction, but still no genetic diagnosis. A heterogeneous group of clinical disorders is caused by mutations in mtDNA that damage respiratory chain function of cell energy production. We developed a method to systematically screen the entire mitochondrial genome. The sequence-data were obtained with a rapid automated system. In the six mitochondrial genomes analysed we found 20 variants of the revised Cambridge reference sequence [Nat. Genet. 23 (1999) 147]. In skeletal muscle nineteen novel mtDNA variants were homoplasmic, suggesting secondary pathogenicity or co-responsibility in determination of the disease. In one patient we identified a novel heteroplasmic mtDNA mutation which presumably has a pathogenic role. This screening is therefore useful to extend the mtDNA polymorphism database and should facilitate definition of disease-related mutations in human mtDNA.  相似文献   

20.
Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%-30%) presenting a rare large-effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD-associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole-exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion-transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10−5). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low-level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large-effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号