首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
杜晓濛  李菁  田向荣  李朝阳  李鹄鸣 《生态学报》2014,34(23):6807-6816
以广布湿生藓类——湿地匐灯藓(Plagiomnium acutum)为比较材料,研究东亚特有濒危植物尖叶拟船叶藓(Dolichomitriopsis diversiformis)在不同快速脱水和复水胁迫下PSⅡ的叶绿素光合荧光变化和活性氧代谢及抗氧化系统变化,探讨两种藓类生理生态适应性差异的成因,以初步确定尖叶拟船叶藓受水分条件限制分布狭窄趋于濒危的原因。结果显示:(1)尖叶拟船叶藓的光合电子传递在脱水后可被极微弱光完全抑制,其抑制光强的恢复明显慢于湿地匐灯藓;其PSⅡ最大光化学效率(Fv/Fm)和实际光化学量子效率(YⅡ)先降而后升,恢复较慢;光化学淬灭(q P)复水后恢复较快,非光化学淬灭(NPQ)的绝对值和变化速率则始终低于湿地匐灯藓。(2)尖叶拟船叶藓活性氧水平明显高于湿地匐灯藓;其SOD、CAT、APX等抗氧化系统酶活性整体变化幅度较大,抗氧化保护物质(As A)含量则明显低于湿地匐灯藓。以上结果表明尖叶拟船叶藓受到环境水分因子限制的原因主要有:(1)PSⅡ的反应中心色素(P680)对脱水伤害较为敏感;(2)复水修复过程中抗氧化保护系统的保护能力偏低。  相似文献   

2.
强光高温胁迫对盾叶薯蓣量子产额和77K荧光光谱的影响   总被引:1,自引:1,他引:0  
以低光强生态型盾叶薯蓣(Dioscorea zingiberensis)为材料,研究强光高温(32℃)对盾叶薯蓣量子产额和77K荧光光谱的影响,以探讨强光高温胁迫与光合作用的关系.结果表明:短期高温强光胁迫引起最大量子产额显著下降,但能迅速恢复,且存在超补偿现象.强光胁迫首先破坏了光系统Ⅱ,表现为胁迫后在77K荧光光谱中出现了F680的荧光峰.670 nm红光诱导后引起部分捕光系统Ⅱ的色素蛋白转移至光系统Ⅰ,导致光系统Ⅰ的荧光发射量增加;716 nm红光诱导后引起捕光系统Ⅱ部分色素蛋白转移到光系统Ⅱ,导致光系统Ⅱ的荧光发射量增加.强光高温胁迫后各个荧光峰的差异程度减少.研究发现,强光高温胁迫引起光系统的能量重新调整,从而出现状态转变;依据F672和F675两个荧光峰的首次出现,预测叶绿体类囊体膜上含叶绿素的多肽或蛋白亚基至少有16个.  相似文献   

3.
濒危植物尖叶拟船叶藓的过氧化物同工酶分析   总被引:3,自引:0,他引:3  
采用聚丙烯酰胺凝胶电泳技术分析了濒危植物尖叶拟船叶藓7个自然居群的过氧化物同工酶.结果表明:尖叶拟船叶藓在13个位点表现酶带.其中 Pod-4、Pod-6、Pod-7为7个居群共有,是尖叶拟船叶藓的特征带;1号居群酶带最多,为12条,除与其他居群共有的3条主带外,还出现了其特有的3务酶带;尖叶拟船叶藓存在哑等位基因现象,有两个稀有基因 Pod-5和 Pod-11.3号和5号、4号和6号有较强的同源性.据此认为尖叶拟船叶藓具有较丰富的遗传多样性.  相似文献   

4.
分子标记在鉴别拟船叶藓属和猫尾藓属中的应用   总被引:2,自引:0,他引:2  
船叶藓科的拟船叶藓属(Dolichom itriopsis)和猫尾藓属植物(Isothecium)非常相似,不易从外部表型上进行属间物种的区分.以尖叶拟船叶藓6个居群、猫尾藓1个居群及疑似尖叶拟船叶藓种1个居群为材料,进行了随机扩增多态性(RAPD)标记分析,结果表明:50个随机引物中有15个引物扩增的产物具有多态性,15个引物共扩增出77条带,其中多态性条带为71条,多态带比率高达92.21%.聚类分析结果表明,疑似种与猫尾藓有较近的亲缘关系,与尖叶拟船叶藓亲缘关系较远.同时测定了疑似尖叶拟船叶藓种的rDNA的ITS全序列,与Genbank已知序列比对结果表明,疑似种与猫尾藓的同源性高达94.74%,而与尖叶拟船叶藓的同源性只有80.64%.进一步支持了RAPD的聚类结果,说明疑似种是猫尾藓而非尖叶拟船叶藓.  相似文献   

5.
树干附生尖叶拟船叶藓性比和有性生殖的比例   总被引:1,自引:0,他引:1  
刘冰  李菁  田启建  陈功锡  陈军 《广西植物》2008,28(4):440-442
通过对贵州梵净山树干附生尖叶拟船叶藓的野外调查和室内研究,结果表明,在44个被调查样方共计1320株植株中,尖叶拟船叶藓单株的性比为8♀∶1♂(N=1320),其中25.0%的单株没有进行性表达;其种群的性比为5♀∶1♀♂(雌性种群:混合种群,N=44),没有发现雄性种群;其单株的有性生殖的比例为10.5%,种群的有性生殖比例为9.3%。结果表明尖叶拟船叶藓种群具有明显的雌性偏向,其种群的自然更新更多的是依赖各种营养繁殖。  相似文献   

6.
树干附生尖叶拟船叶藓的孢子体分布格局和败育研究   总被引:3,自引:0,他引:3  
通过野外定位考察和实验室观察分析,结果显示:(1)贵州梵净山树干附生尖叶拟船叶藓的孢子体种群80%分布在树干的基部;(2)尖叶拟船叶藓的孢子体在其主茎和一到四次分枝上皆有分布,但在一次分枝上分布最多,并且一次分枝上的与主茎或其它各次分枝上分布的之间存在显著差异;(3)孢子体败育发生在胚胎发育时期、孢蒴膨大期或者孢子形成期等3个时期,孢子体败育率为7.3%,败育孢子体的平均生物量为正常成熟的43.3%.表明尖叶拟船叶藓孢子体种群偏少且孢子体败育率低是其重要的生物学特征.  相似文献   

7.
不同含水量下尖叶拟船叶藓光合速率对光温的响应及其模型   总被引:13,自引:1,他引:12  
对不同大气温度、藓体含水量及光照条件下尖叶拟船叶藓光合速率测定研究结果表明,光合速率(Pn)与光照强度(PAR)、大气温度(Ta)及藓体含水量(PWC)之间密切相关,光合速率的光响应曲线为直角双曲线,温度、藓体含水量影响图形的曲度参数,在低含水量、高气温组合和高含水量、低气温组合的藓体高光强下都使光合速率降低.弱光下(PAR<200μmol·s^-1·m^-2),光合速率最大值Pmax出现在PWC:为50%~80%,但随着Ta的升高而增大,当Ta>25℃,Pmax随Ta升高而降低;随着光照强度的增大,Pmax出现的PWC水平随之提高,当PAR<200μmol·s^-1·m^-2时,光合速率最大值Pmax出现在Ta比较高的范围(20~25℃),并随PWC的升高而增大,当PWC>80%时,Pmax随PWC升高而降低;随着光照强度的增大,Pmax出现的Ta水平降低、在230  相似文献   

8.
梵净山尖叶拟船叶藓的遗传多样性分析   总被引:2,自引:0,他引:2  
采用RAPD技术,选取10个引物对梵净山的尖叶拟船叶藓(Dolichomitriopsis diversiformis)自然分布区的南、北坡14个居群153个个体的总DNA进行了扩增,共得到196个位点.统计分析表明:(1)梵净山尖叶拟船叶藓在物种水平有较高的遗传多样性,居群水平的遗传多样性相对较低.(2)该藓种遗传多样性高低与海拔高度无关,但南坡的多样性水平略高于北坡.(3)遗传多样性的63.29%发生在居群间,只有36.71%发生在居群内.研究结果提示尖叶拟船叶藓的遗传多样性受小生境的影响较大,遗传漂变和环境适应可能是影响居群分化的主要原因.  相似文献   

9.
利用分离的叶绿体作实验材料,发现华山松(Pinus armandi Franch.)南方种源的4阶导数吸收光谱在680nm处峰值较大,在670nm处峰值较小,而北方种源中出现了在680nm处峰值较在670nm峰值小的类群,推断北方种群反应中心活力有下降趋势。南、北种源之间的低温(77K)荧光发射光谱有明显差异,PSⅠ、PSⅡ发射峰位置出现地理变动。低温荧光激发光谱分析表明,地理变异主要发生在叶绿素a的分子状态上。研究还表明,完整的针叶因为有角质层、松脂等物质干扰,检测不出光谱的差异,不是理想的实验材料。  相似文献   

10.
我们观测了不同光照预处理对拟南芥、小麦和大豆叶片光合作用和低温(77K)叶绿素荧光参数F685、F735和F685/F735的影响。野生型拟南芥叶片光合作用对饱和光到有限光转变的响应曲线是V型,而缺乏叶绿体蛋白激酶的突变体STN7的这一曲线为L型。饱和白光可以引起拟南芥叶片F685/F735的明显降低,但是F735没有明显增高,而弱红光可以导致拟南芥叶片F685/F735的明显降低和F735的明显增高,表明弱红光可以引起状态1向状态2的转变,同时伴随从光系统Ⅱ脱离的LHCⅡ与光系统Ⅰ的结合,而饱和白光只能引起LHCⅡ从光系统Ⅱ反应中心复合体脱离。并且,低温叶绿素荧光分析结果证明,饱和白光可以引起大豆叶片LHCⅡ脱离,但是不能引起小麦叶片LHCⅡ脱离,而弱红光可以引起小麦叶片的这种状态转换,却不能引起大豆叶片的这种状态转换。因此,饱和白光引起的野生型拟南芥和大豆叶片的LHCⅡ脱离不是一个典型的状态转换现象。  相似文献   

11.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.  相似文献   

12.
Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.  相似文献   

13.
The effects of nano-anatase TiO2 on light absorption, distribution, and conversion, and photoreduction activities of spinach chloroplast were studied by spectroscopy. Several effects of nano-anatase TiO2 were observed: (1) the absorption peak intensity of the chloroplast was obviously increased in red and blue region, the ratio of the Soret band and Q band was higher than that of the control; (2) the great enhancement of fluorescence quantum yield near 680 nm of the chloroplast was observed, the quantum yield under excitation wavelength of 480 nm was higher than the excitation wavelength of 440 nm; (3) the excitation peak intensity near 440 and 480 nm of the chloroplast significantly rose under emission wavelength of 680 nm, and F 480 / F 440 ratio was reduced; (4) when emission wavelength was at 720 nm, the excitation peaks near 650 and 680 nm were obviously raised, and F 650 / F 680 ratio rose; (5) the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution were greatly improved, but the photoreduction activities of PSI were a little changed. Together, the studies of the experiments showed that nano-anatase TiO2 could increase absorption of light on spinach chloroplast and promote excitation energy to be absorbed by LHCII and transferred to PSII and improve excitation energy from PSI to be transferred to PSII, thus, promote the conversion from light energy to electron energy and accelerate electron transport, water photolysis, and oxygen evolution.  相似文献   

14.
State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ∼100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ∼1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii.  相似文献   

15.
Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.  相似文献   

16.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

17.
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150–160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.  相似文献   

18.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   

19.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

20.
In higher plants, the photosystem (PS) II core and its several light harvesting antenna (LHCII) proteins undergo reversible phosphorylation cycles according to the light intensity. High light intensity induces strong phosphorylation of the PSII core proteins and suppresses the phosphorylation level of the LHCII proteins. Decrease in light intensity, in turn, suppresses the phosphorylation of PSII core, but strongly induces the phosphorylation of LHCII. Reversible and differential phosphorylation of the PSII-LHCII proteins is dependent on the interplay between the STN7 and STN8 kinases, and the respective phosphatases. The STN7 kinase phosphorylates the LHCII proteins and to a lesser extent also the PSII core proteins D1, D2 and CP43. The STN8 kinase, on the contrary, is rather specific for the PSII core proteins. Mechanistically, the PSII-LHCII protein phosphorylation is required for optimal mobility of the PSII-LHCII protein complexes along the thylakoid membrane. Physiologically, the phosphorylation of LHCII is a prerequisite for sufficient excitation of PSI, enabling the excitation and redox balance between PSII and PSI under low irradiance, when excitation energy transfer from the LHCII antenna to the two photosystems is efficient and thermal dissipation of excitation energy (NPQ) is minimised. The importance of PSII core protein phosphorylation is manifested under highlight when the photodamage of PSII is rapid and phosphorylation is required to facilitate the migration of damaged PSII from grana stacks to stroma lamellae for repair. The importance of thylakoid protein phosphorylation is highlighted under fluctuating intensity of light where the STN7 kinase dependent balancing of electron transfer is a prerequisite for optimal growth and development of the plant. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号