首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 193 毫秒
1.
Vesicular stomatitis virus and encephalomyocarditis virus do not multiply in the majority of peritoneal macrophages freshly explanted from 4- to 8-week-old male or female mice. However, when peritoneal macrophages were cultivated in vitro for 3 to 5 days, these cells became permissive for both viruses. The loss of antiviral state in "aged" macrophages paralleled a significant decrease in the intracellular levels of (2'-5')oligo-adenylate synthetase activity. Although biologically active interferon was not detected in the nutrient medium of macrophage cultures, freshly harvested peritoneal cells could confer an antiviral state on monolayer cultures of mouse cells (aged macrophages, embryonic fibroblasts, and L cells) but not on heterologous chicken embryo, rabbit kidney, or human cells infected with vesicular stomatitis virus or encephalomyocarditis virus. The conferred antiviral state required at least 7 h to develop in target cells and was totally inhibited by the presence of antibody to mouse interferon alpha/beta but not to interferon gamma in the cocultures. Heterologous guinea pig and rabbit peritoneal cells could not transfer an antiviral state to target mouse cells. Donor peritoneal cells from mice preinjected with antibody to interferon alpha/beta could not transfer an antiviral state to target mouse cells. This ensemble of results indicating that freshly harvested peritoneal cells transfer interferon (which is responsible for inducing an antiviral state in susceptible mouse target cells) adds further experimental evidence that interferon is spontaneously expressed in normal mice and plays an important role in maintaining some host cells in an antiviral state.  相似文献   

2.
The allele Mx regulates the extent to which interferon alpha/beta inhibits the growth of influenza viruses in mouse cells such as peritoneal macrophages. The time course of induction of the antiviral state against an influenza A virus is comparable in macrophages with and without Mx and is similar to that found with vesicular stomatitis virus. In contrast, the decay of the antiviral state against influenza virus is markedly slower in Mx-positive cells and slower than that against vesicular stomatitis virus observed in either Mx-positive or Mx-negative cells. Thus, after removal of interferon alpha/beta, Mx-positive cells remain protected against influenza virus at times when they have lost protection against vesicular stomatitis virus. These results suggest that interferon alpha/beta treatment activates different antiviral mechanisms, each acting against distinct groups of viruses and each independently controlled by host genes.  相似文献   

3.
Freshly harvested mouse peritoneal cells, from normal lipopolysaccharide (LPS)-responsive (Lpsn) mice, were capable of transferring an antiviral state (to vesicular stomatitis virus) to "in vitro aged" mouse macrophages permissive for viral replication. The transfer of the antiviral state was completely abrogated by addition of antibody to interferon (IFN)-alpha/beta in the co-culture medium. In contrast, even large numbers of donor peritoneal cells from LPS-hyporesponsive (Lpsd) C3H/HeJ and C57BL/10ScCR mice did not transfer an antiviral state to target cells. Although peritoneal macrophages from Lpsd mice did not transfer an antiviral state to target cells, they were nevertheless found to be in an antiviral state when first placed in culture. Injection of mice with antibody to mouse IFN-alpha/beta rendered peritoneal macrophages from both Lpsn and Lpsd mice permissive for vesicular stomatitis virus. The decay of this initial antiviral state in peritoneal macrophages during in vitro culture was far more rapid for Lpsd mice than for normal mice. Addition of antibody to mouse IFN-alpha/beta markedly enhanced the in vitro decay of the antiviral state of peritoneal macrophages. Treatment of total peritoneal cells from Lpsn mice with LPS resulted in IFN production, whereas IFN was not detected in the cellfree medium of LPS-treated peritoneal cells from Lpsd C3H/HeJ and C57BL/10ScCR mice. Genetic studies with F1 hybrids between Lpsn and Lpsd mice and with Lpsn and Lpsd recombinant inbred strains revealed a striking correlation between the capacity of peritoneal cells to transfer an antiviral state and their capacity to produce IFN after stimulation with LPS, suggesting that closely linked, if not identical, genes are in some way involved in the transfer of antiviral state as well as in the LPS response by peritoneal cells of normal mice.  相似文献   

4.
The MuIFN-alpha/beta and MuIFN-gamma induced antiviral states which are directed against mengovirus have been shown previously to be differentially regulated. Following interferon removal, the MuIFN-alpha/beta-induced antiviral state decays rapidly, while the MuIFN-gamma-induced antiviral state increases dramatically. To determine whether these observations with mengovirus represent part of a general phenomenon, these studies have been extended using vesicular stomatitis virus and vaccinia virus, which represent two distinctly different groups of viruses. The antiviral states induced by MuIFN-gamma against all three viruses increased dramatically following interferon removal. The antiviral state induced by MuIFN-alpha/beta against vesicular stomatitis virus was stable following interferon removal, while the antiviral states induced by MuIFN-alpha/beta against mengovirus and vaccinia virus decayed rapidly. Also, levels of 2'5' oligoadenylate synthetase were determined at various times following interferon removal. MuIFN-alpha/beta was found to be a relatively strong inducer of 2'5' oligoadenylate synthetase, while MuIFN-gamma was a relatively weak inducer. Further, while the changes in 2'5' oligoadenylate synthetase levels paralleled the changes in the levels of the antiviral states induced by MuIFN-alpha/beta and MuIFN-gamma against mengovirus and vaccinia virus, the changes in 2'5' oligoadenylate synthetase levels did not parallel the changes in the antiviral state induced by MuIFN-alpha/beta against vesicular stomatitis virus. The results suggested that the 2'5' oligoadenylate synthetase levels did not correlate with the level of antiviral state.  相似文献   

5.
The C3H/HeJ mouse strain bears an autosomal gene defect, Lpsd, which results in a greatly diminished capacity to respond to endotoxin, the ubiquitous lipopolysaccharide derived from the cell walls of gram-negative bacteria. These mice also exhibit greater susceptibility to a variety of viral and bacterial infections than syngeneic, fully lipopolysaccharide-responsive (Lpsn) mouse strains and possess macrophages with defects in differentiation which are reversed by treatment with exogenous interferon (IFN). To test directly the hypothesis that C3H/HeJ macrophages are deficient in endogenous IFN levels, macrophages from C3H/HeJ (Lpsd) and C3H/OuJ (Lpsn) mice were compared for sensitivity to vesicular stomatitis virus. At a multiplicity of infection of 0.1, C3H/OuJ macrophages were completely refractory to infection, whereas C3H/HeJ macrophages were permissive for replication, and infection resulted in 100% cytopathic effect. These findings were confirmed with a second inbred Lpsn and Lpsd strain pair. Levels of 2',5'-oligoadenylate synthetase were significantly higher in Lpsn cells. C3H/HeJ macrophages, derived from bone marrow precursors under the influence of macrophage colony-stimulating factor, shown previously to induce IFN in macrophages, were as refractory as C3H/OuJ macrophages. Exposure of nonpermissive macrophages to anti-IFN-alpha/beta antibody prior to infection rendered cells permissive. Our findings suggest that endotoxin provides a primary stimulus for the maintenance of normal macrophage differentiation and innate resistance via the induction of endogenous IFN by macrophages.  相似文献   

6.
DBA/2 mice were injected intraperitoneally (i.p.) with interferon-sensitive 745 or interferon-resistant 3C1-8 Friend erythroleukemia cells (FLC) and then injected i.p. with mouse interferon alpha/beta. Interferon enhanced the expression of histocompatibility (H-2) antigens on individual 745 FLC within the peritoneum, but did not alter the expression of H-2 antigens on individual 3C1-8 FLC. Likewise, interferon treatment resulted in an increase in the level of 2'-5' oligo-adenylate (2-5A) synthetase activity in 745 FLC, but did not affect the level of activity in 3C1-8 FLC. These results provide evidence that the phenotype of interferon sensitivity or resistance of FLC does not change within the peritoneum. An incidental finding was that the basal level of 2-5A synthetase activity of in vivo passaged 745 cells was greater than that of 3C1-8 FLC. The finding that injection of mice bearing 745 FLC with antibody to mouse interferon alpha/beta reduced the level of 2-5A synthetase activity in these cells, but did not alter the level of 2-5A activity in 3C1-8 FLC, suggests that endogenous interferon in the peritoneum may have been the responsible factor.  相似文献   

7.
Vasoactive Intestinal Peptide (VIP) is able at the concentration 10 to 100 nM to induce in HT-29 cells 2'5' oligoadenylate (2'5' A) synthetase activity. The kinetics of this induction show that the maximal effect is attained after 24 hrs. VIP induces 2'5' A synthetase parallel to inhibition of vesicular stomatitis virus growth. The levels of these two induced activities after VIP treatment are comparable to those induced by the poly (I).poly (C), an inducer of IFN beta/alpha in mammalian cells. Moreover the anti-IFN beta/alpha antibodies abolish the VIP-induced 2'5' A synthetase whereas anti-IFN gamma antibodies are ineffective. The fact that VIP establishes an antiviral state in HT-29 cells potentiates new pharmaceutical applications for this neuropeptide.  相似文献   

8.
In mouse Mx+ cells, interferon alpha/beta induces the synthesis of the nuclear Mx protein, whose accumulation is correlated with specific inhibition of influenza viral protein synthesis. When Mx+ mouse cells are microinjected with the monoclonal anti-Mx antibody 2C12, interferon alpha/beta still induces Mx protein, but no longer inhibits efficiently the expression of influenza viral proteins as visualized by immunofluorescent labeling. However, interferon inhibition of an unrelated control virus, vesicular stomatitis virus, remains unchanged. Proteins with homology to mouse Mx protein are found in interferon-treated cells of a variety of mammalian species. In rat cells, for instance, rat interferon alpha/beta induces three Mx proteins which all cross-react with antibody 2C12 but differ in mol. wt and intracellular location, and it protects these cells well against influenza viruses. However, when rat cells are microinjected with antibody 2C12, interferon alpha/beta cannot induce an efficient antiviral state against influenza virus infection, whereas protection against vesicular stomatitis virus is not altered. These results show that both mouse and rat cells require functional Mx proteins for efficient protection against influenza virus. They further demonstrate that microinjection of antibodies is a promising way of elucidating the role of particular interferon-induced proteins in the intact cell.  相似文献   

9.
We have generated mice lacking the gene for beta interferon and report that they are highly susceptible to vaccinia virus infection. Furthermore, in cultured embryo fibroblasts, viral induction of alpha interferon and of 2-5A synthetase genes is impaired. We also show that beta interferon does not prime its own expression.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号