首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Chromosome organizations of related bacterial genera are well conserved despite a very long divergence period. We have assessed the forces limiting bacterial genome plasticity in Escherichia coli by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication, replication-associated gene dosage, and chromosome organization into macrodomains. Chromosomes were rearranged by large inversions. Changes in the compositional skew of replichores, in the coordination of gene expression with DNA replication or in the replication-associated gene dosage have only a moderate effect on cell physiology because large rearrangements inverting the orientation of several hundred genes inside a replichore are only slightly detrimental. By contrast, changing the balance between the two replication arms has a more drastic effect, and the recombinational rescue of replication forks is required for cell viability when one of the chromosome arms is less than half than the other one. Macrodomain organization also appears to be a major factor restricting chromosome plasticity, and two types of inverted configurations severely affect the cell cycle. First, the disruption of the Ter macrodomain with replication forks merging far from the normal replichore junction provoked chromosome segregation defects. The second major problematic configurations resulted from inversions between Ori and Right macrodomains, which perturb nucleoid distribution and early steps of cytokinesis. Consequences for the control of the bacterial cell cycle and for the evolution of bacterial chromosome configuration are discussed.  相似文献   

2.
3.
The M-band technique was used to assess the number of attachment points of DNA to the cell membrane of Streptococcus faecalis grown at three different rates. Cells were X irradiated in liquid nitrogen and then analyzed simultaneously for the introduction of double-strand breaks into the chromosome and the degree of removal of DNA from the cell membrane (M band). Consideration of the data from these experiments and of the topology of the bacterial chromosome resulted in a reevaluation of former quantitative models. Our results are consistent with a semiquantitative model in which the bacterial chromosome is organized around a core structure. We interpret our data to mean that the core is attached to the membrane and that the complexity of the core changes more drastically with growth rate than does the number of membrane-DNA attachment points. An alternative model in which RNA hybridizes with DNA containing single- and double-strand breaks is also discussed. In any event, the complexity of these interactions precludes a reliable estimate of the number of membrane-DNA attachment sites.  相似文献   

4.
5.
Advances in microscopic and cell biological techniques have considerably improved our understanding of bacterial chromosome organization and dynamics. The nucleoid was formerly perceived to be an amorphous entity divided into ill-defined domains of supercoiling that are randomly deposited in the cell. Recent work, however, has demonstrated a remarkable degree of spatial organization. A highly ordered chromosome structure, established while DNA replication and partitioning are in progress, is maintained and propagated during growth. Duplication of the chromosome and partitioning of the newly generated daughter strands are interwoven processes driven by the dynamic interplay between the synthesis, segregation and condensation of DNA. These events are intimately coupled with the bacterial cell cycle and exhibit a previously unanticipated complexity reminiscent of eukaryotic systems.  相似文献   

6.
The bacterial nucleoid: a highly organized and dynamic structure   总被引:1,自引:0,他引:1  
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.  相似文献   

7.
In several bacterial species, the faithful completion of chromosome partitioning is known to be promoted by a conserved family of DNA translocases that includes Escherichia coli FtsK and Bacillus subtilis SpoIIIE. FtsK localizes at nascent division sites during every cell cycle and stimulates chromosome decatenation and the resolution of chromosome dimers formed by recA -dependent homologous recombination. In contrast, SpoIIIE localizes at sites where cells have divided and trapped chromosomal DNA in the membrane, which happens during spore development and under some conditions when DNA replication is perturbed. SpoIIIE completes chromosome segregation post-septationally by translocating trapped DNA across the membrane. Unlike E. coli , B. subtilis contains a second uncharacterized FtsK/SpoIIIE-like protein, SftA (formerly YtpS). We report that SftA plays a role similar to FtsK during each cell cycle but cannot substitute for SpoIIIE in rescuing trapped chromosomes. SftA colocalizes with FtsZ at nascent division sites but not with SpoIIIE at sites of chromosome trapping. SftA mutants divide over unsegregated chromosomes more frequently than wild-type unless recA is inactivated, suggesting that SftA, like FtsK, stimulates chromosome dimer resolution. Having two FtsK/SpoIIIE paralogues is not conserved among endospore-forming bacteria, but is highly conserved within several groups of soil- and plant-associated bacteria.  相似文献   

8.
Genome replication is a fundamental requirement for the proliferation of all cells. Throughout the domains of life, conserved DNA replication initiation proteins assemble at specific chromosomal loci termed replication origins and direct loading of replicative helicases (1). Despite decades of study on bacterial replication, the diversity of bacterial chromosome origin architecture has confounded the search for molecular mechanisms directing the initiation process. Recently a basal system for opening a bacterial chromosome origin (oriC) was proposed (2). In the model organism Bacillus subtilis, a pair of double-stranded DNA (dsDNA) binding sites (DnaA‐boxes) guide the replication initiator DnaA onto adjacent single-stranded DNA (ssDNA) binding motifs (DnaA‐trios) where the protein assembles into an oligomer that stretches DNA to promote origin unwinding. We report here that these core elements are predicted to be present in the majority of bacterial chromosome origins. Moreover, we find that the principle activities of the origin unwinding system are conserved in vitro and in vivo. The results suggest that this basal mechanism for oriC unwinding is broadly functionally conserved and therefore may represent an ancestral system to open bacterial chromosome origins.  相似文献   

9.
During the bacterial cell cycle, the processes of chromosome replication, DNA segregation, DNA repair and cell division are coordinated by precisely defined events. Tremendous progress has been made in recent years in identifying the mechanisms that underlie these processes. A striking feature common to these processes is that non-coding DNA motifs play a central part, thus 'sculpting' the bacterial chromosome. Here, we review the roles of these motifs in the mechanisms that ensure faithful transmission of genetic information to daughter cells. We show how their chromosomal distribution is crucial for their function and how it can be analysed quantitatively. Finally, the potential roles of these motifs in bacterial chromosome evolution are discussed.  相似文献   

10.
The structure of the bacterial chromosome was investigated after introducing breaks in the DNA with gamma irradiation. It is demonstrated that irradiation of the chromosome in the cell prior to isolation results in partial unfolding of the isolated condensed DNA, while irradiation of the chromosome after it is released from the cell has no demonstrable effect on DNA folding. The results indicate that RNA/DNA interactions which stabilize DNA folds are unstable when breaks are introduced in the DNA prior to isolation of the chromosome. It is suggested that the supercoiled state of the DNA is required for the initial stabilization of some of the critical RNA/DNA interaction in the isolated nucleoid. However, some of these interactions are not affected by irradiation of the cells. Remnant supercoiling in partially relaxed chromosomes containing a limited number of DNA breaks has the same superhelical density as the unirradiated chromosome. This suggests that restraints on rotation of the packaged DNA are formed prior to the physical unwinding which occurs at the sites of the radiation induced DNA breaks. — Analysis of the in vitro irradiated chromosomes shows that there are 100+-30 domains of supercoiling per genome equivalent of DNA. The introduction of up to 50 double-strand breaks per nucleoid does not influence rotor speed effects of the sedimentation coefficient of the chromosome.  相似文献   

11.
Treatment of Bacillus subtilis strain 168 with mitomycin C caused induction of a defective prophage, PBSH. During induction, extensive deoxyribonucleic acid (DNA) synthesis took place. Concurrently, a change in marker frequency of the bacterial DNA was noticed. The frequency of only one marker, ade-16, the marker closest to the origin of the bacterial chromosome, was enhanced manyfold. DNA from whole phage particles transformed all bacterial markers at a frequency equal to that of DNA in the noninduced culture, except ade-16, the frequency of which was enhanced 30 to 100 times. Analysis of a double isotope experiment demonstrated that 14% of the phage DNA was derived from preinduction bacterial DNA. The other 86% of DNA in phage particles was DNA replicated after induction. Density label experiments with 5-bromodeoxyuridine showed that postinduction DNA synthesis took place preferentially at the origin region of the bacterial chromosome. Measurement of the molecular weight of DNA replicated after induction clearly showed that postinduction DNA replication is chromosomal. No evidence for prophage detachment and autonomous phage DNA replication was found. The data indicated that, after mitomycin C action, the bacterial chromosome under-went multiple reinitiation at the origin, while normal sequential DNA replication was stopped. The pool of replicated bacterial DNA was fragmented randomly. This DNA was packaged into PBSH particles which were released after cell lysis.  相似文献   

12.
While the essential role of episomal par loci in plasmid DNA partitioning has long been appreciated, the function of chromosomally encoded par loci is less clear. The chromosomal parA-parB genes are conserved throughout the bacterial kingdom and encode proteins homologous to those of the plasmidic Type I active partitioning systems. The third conserved element, the centromere-like sequence called parS, occurs in several copies in the chromosome. Recent studies show that the ParA-ParB-parS system is a key player of a mitosis-like process ensuring proper intracellular localization of certain chromosomal regions such as oriC domain and their active and directed segregation. Moreover, the chromosomal par systems link chromosome segregation with initiation of DNA replication and the cell cycle.  相似文献   

13.
Bacterial cells are much smaller and have a much simpler overall structure and organization than eukaryotes. Several prominent differences in cell organization are relevant to the mechanisms of chromosome segregation, particularly the lack of an overt chromosome condensation/decondensation cycle and the lack of a microtubule-based spindle. Although bacterial chromosomes have a rather dispersed appearance, they nevertheless have an underlying high level of spatial organization. During the DNA replication cycle, early replicated (oriC) regions are localized towards the cell poles, whereas the late replicated terminus (terC) region is medially located. This spatial organization is thought to be driven by an active segregation mechanism that separates the sister chromosomes continuously as replication proceeds. Comparisons of various well-characterized bacteria suggest that the mechanisms of chromosome segregation are likely to be diverse, and that in many bacteria, multiple overlapping mechanisms may contribute to efficient segregation. One system in which the molecular mechanisms of chromosome segregation are beginning to be elucidated is that of sporulating cells of Bacillus subtilis. The key components of this system have been identified, and their functions are understood, in outline. Although this system appears to be specialized, most of the functions are conserved widely throughout the bacteria.  相似文献   

14.
Graumann PL 《Biochimie》2001,83(1):53-59
SMC proteins are a ubiquitous protein family, present in almost all organisms so far analysed except for a few bacteria. They function in chromosome condensation, segregation, cohesion, and DNA recombination repair in eukaryotes, and can introduce positive writhe into DNA in vitro. SMC proteins and the structurally homologous MukB protein are unusual ATPases that form antiparallel dimers, with long coiled coil segments separating globular ends capable of binding DNA. Recently, SMC proteins have been shown to be essential for chromosome condensation, segregation and cell cycle progression in bacteria. Identification of a suppressor mutation for MukB in topoisomerase I in Escherichia coli suggests that SMC proteins are involved in negative DNA supercoiling in vivo, and by this means organize and compact chromosomes. A model is discussed in which bacterial SMC proteins act after an initial separation of replicated chromosome origins into the future daughter cell, separating sister chromatids by condensing replicated DNA strands within both cell halves. This would be analogous to a pulling of DNA strands into opposite cell halves by a condensation mechanism exerted at two specialised subregions in the cell.  相似文献   

15.
Molecular architecture of the kinetochore-microtubule interface   总被引:1,自引:0,他引:1  
Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.  相似文献   

16.
Huang F  He ZG 《PloS one》2012,7(6):e38276
The chromosome partitioning proteins, ParAB, ensure accurate segregation of genetic materials into daughter cells and most bacterial species contain their homologs. However, little is known about the regulation of ParAB proteins. In this study, we found that 3-methyladenine DNA glycosylase I MsTAG(Ms5082) regulates bacterial growth and cell morphology by directly interacting with MsParA (Ms6939) and inhibiting its ATPase activity in Mycobacterium smegmatis. Using bacterial two-hybrid and pull-down techniques in combination with co-immunoprecipitation assays, we show that MsTAG physically interacts with MsParA both in vitro and in vivo. Expression of MsTAG under conditions of DNA damage induction exhibited similar inhibition of growth as the deletion of the parA gene in M. smegmatis. Further, the effect of MsTAG on mycobacterial growth was found to be independent of its DNA glycosylase activity, and to result instead from direct inhibition of the ATPase activity of MsParA. Co-expression of these two proteins could counteract the growth defect phenotypes observed in strains overexpressing MsTAG alone in response to DNA damage induction. Based on protein co-expression and fluorescent co-localization assays, MsParA and MsTAG were further found to co-localize in mycobacterial cells. In addition, the interaction between the DNA glycosylase and ParA, and the regulation of ParA by the glycosylase were conserved in M. tuberculosis and M. smegmatis. Our findings provide important new insights into the regulatory mechanism of cell growth and division in mycobacteria.  相似文献   

17.
18.
19.
The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼–¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed.  相似文献   

20.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号