首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Trypanosoma cruzi, a protozoan parasite, is the etiologic agent of Chagas disease. The disease is characterized by acute and chronic phases, with high and low parasitemia, respectively. A strong immune activation is necessary for the host to enter the chronic phase; however, immune mechanisms participating in the reduction of parasites between the acute and chronic phases of the disease have been very difficult to elucidate. We report here the discovery of anti-egressin, an antibody present in serum from chronically infected BALB/c mice that is able to inhibit parasite egress from infected BALB/c fibroblast cultures in vitro. The antibody is very concentrated in serum from these mice; chronic serum may be diluted 1:20 while still maintaining functional activity. Isotype analysis of anti-egressin has suggested it to be IgG2a. Further analysis revealed that anti-egressin was specific for a component expressed on the surface of infected host cells. The specificity of anti-egressin toward the extracellular portion of infected host cells was demonstrated both by using a quantitative assay measuring released trypomastigotes and through immunocytochemical staining. The novel role of anti-egressin in the inhibition of parasite egress from infected host cells has not been described in the literature to date. We believe that anti-egressin plays an important role in achieving the low parasitemia characteristic of chronic Chagas disease.  相似文献   

2.
Trypanosoma cruzi is the causative agent of Chagas disease, which is characterized by acute and chronic phases. During the former, parasitemia rises dramatically, then decreases significantly during the chronic phase. Immune mechanisms responsible for the parasitemia reduction have not been thoroughly elucidated. The goal of the present study was to further characterize the immune response during chronic infection. Previously, we described antiegressin, an antibody in sera from chronically infected mice. The in vitro presence of antiegressin inhibits parasite egress from infected host cells. Antiegressin appears by day 14 of an in vivo infection and is maintained through at least day 280 postinfection. The in vitro functional activity of antiegressin is initiated late in the 4-6 days intracellular growth cycle of T. cruzi; antiegressin may be added at day 4, inhibiting parasite release at day 5. Immunocytochemical staining using antineuraminidase demonstrates the presence of mature parasites inside host BALB/c fibroblasts grown in the presence of antiegressin. These results demonstrate the ability of antiegressin to inhibit emergence of developmentally mature trypomastigotes from infected host cells late in their intracellular growth cycle. We believe this antibody plays an important and novel role in achieving the low-parasitemia characteristic of chronic Chagas disease.  相似文献   

3.
The mechanisms by which the causative agent of Chagas' disease impair its host's immune response are of paramount importance but poorly understood. Results presented in this paper show for the first time that Trypanosoma cruzi trypomastigotes infect T lymphocytes in vitro and more interestingly in vivo, and that trypomastigotes released from infected cells are infectious. In addition treatment of purified human T lymphocytes with McAb against CD3 and HLA-DR antigens significantly inhibited parasite infection. T. cruzi antigens were detected on the membrane of infected T cells and could therefore represents targets for cytotoxic mechanisms. These results might have important consequences for the understanding of the dramatic disruption of immune response observed during Chagas' disease and more generally provide additional information on T lymphocyte infection by pathogens.  相似文献   

4.
Three inbred strains of mice (BALB/cJ, C3H/HeJ and NZB/BInJ) were infected with trypomastigotes of Trypanosoma cruzi. Sera were taken at different times after infection and radioimmunoprecipitation assays were used to detect antibodies against individual T. cruzi epimastigote and trypomastigote antigens. The mouse strains differed in regard to the spectrum of antibodies and the time after infection when the various epimastigote specific antibody species appeared. NZB mice had antibodies against at least 25 polypeptides ranging in molecular weight from 20,000 to 90,000 D at 3 wk after infection, and these persisted until at least 10 wk post-infection. C3H and BALB/c had antibodies against fewer than 5 antigens at 3 wk after infection; whereas by week 10, antibodies against at least 25 polypeptides were detected. C3H mice that were most susceptible to infection (but not NZB or BALB/c mice) had antibodies against a 25,000 D molecular weight epimastigote antigen. The antibody response against trypomastigote polypeptides was more uniform. Sera from all mouse strains at 3 wk after infection precipitated the same polypeptides and the radioimmunoprecipitation patterns did not change as a function of time after infection.  相似文献   

5.
In experimental murine infections with Trypanosoma rangeli it has been observed development immune response to Trypanosoma cruzi. The aim of the present work was to analyze the result of antigenic stimuli and the protective effect with T. rangeli in T. cruzi infections. Mice groups immunized with metacyclic trypomastigotes of T. rangeli (Choach -2V strain), derived from haemolymph and salivary gland and reinfected with T. cruzi virulent populations (Tulahuen strain, SA strain and Dm28c clone) from infected in vitro cells, showed decrease severity of disease outcomes, low parasitemia levels and 100% survival of all mice immunized, in comparison with groups infected only with T. cruzi populations, which demonstrated tissue affection, high parasitemia levels and the death of all animals. The above mentioned data contribute to understand the biological behaviour of T. cruzi and T. rangeli and their interaction with vertebrate host.  相似文献   

6.
We have generated proteoliposomes carrying proteins of Trypanosoma cruzi for use as immunogens in BALB/c mice. T. cruzi trypomastigote and amastigote forms were sonicated and mixed with SDS, with 94% recovery of soluble proteins. To prepare proteoliposomes, we have used a protocol in which dipalmitoylphosphatidylcholine, dipalmitoyl-phosphatidylserine and cholesterol were incubated with the parasite proteins. BALB/c mice immunized with 20microg were able to generate antibodies which, in Western blotting, reacted with the proteins of T. cruzi. We further investigated the ability of peritoneal cells from immunized mice to arrest the intracellular replication of trypomastigotes, in vitro. After 72h of culture, the number of intracellular parasites in immunized macrophages decreased significantly, as compared to controls. Despite the fact that exposure of mice to T. cruzi proteins incorporated into proteoliposomes generate antibodies and activate macrophages, the immunized mice were not protected against T. cruzi intraperitoneal challenge.  相似文献   

7.
Studies performed in vitro suggest that activation of Toll-like receptors (TLRs) by parasite-derived molecules may initiate inflammatory responses and host innate defense mechanisms against Trypanosoma cruzi. Here, we evaluated the impact of TLR2 and myeloid differentiation factor 88 (MyD88) deficiencies in host resistance to infection with T. cruzi. Our results show that macrophages derived from TLR2 (-/-) and MyD88(-/-) mice are less responsive to GPI-mucin derived from T. cruzi trypomastigotes and parasites. In contrast, the same cells from TLR2(-/-) still produce TNF-alpha, IL-12, and reactive nitrogen intermediates (RNI) upon exposure to live T. cruzi trypomastigotes. Consistently, we show that TLR2(-/-) mice mount a robust proinflammatory cytokine response as well as RNI production during the acute phase of infection with T. cruzi parasites. Further, deletion of the functional TLR2 gene had no major impact on parasitemia nor on mortality. In contrast, the MyD88(-/-) mice had a diminished cytokine response and RNI production upon acute infection with T. cruzi. More importantly, we show that MyD88(-/-) mice are more susceptible to infection with T. cruzi as indicated by the higher parasitemia and accelerated mortality, as compared with the wild-type mice. Together, our results indicate that T. cruzi parasites elicit an alternative inflammatory pathway independent of TLR2. This pathway is partially dependent on MyD88 and necessary for mounting optimal inflammatory and RNI responses that control T. cruzi replication during the early stages of infection.  相似文献   

8.
One of the hallmarks of Trypanosoma cruzi invasion of non-professional phagocytes is facilitation of the process by host cell actin depolymerization. Host cell entry by invasive T. cruzi trypomastigotes is accomplished by exploiting a cellular wound repair process involving Ca(2+)-regulated lysosome exocytosis (i.e. lysosome-dependent) or by engaging a recently recognized lysosome-independent pathway. It was originally postulated that cortical actin microfilaments present a barrier to lysosome-plasma membrane fusion and that transient actin depolymerization enhances T. cruzi entry by increasing access to the plasma membrane for lysosome fusion. Here we demonstrate that cytochalasin D treatment of host cells inhibits early lysosome association with invading T. cruzi trypomastigotes by uncoupling the cell penetration step from lysosome recruitment and/or fusion. These findings provide the first indication that lysosome-dependent T. cruzi entry is initiated by plasma membrane invagination similar to that observed for lysosome-independent entry. Furthermore, prolonged disruption of host cell actin microfilaments results in significant loss of internalized parasites from infected host cells. Thus, the ability of internalized trypomastigotes to remain cell-associated and to fuse with host cell lysosomes is critically dependent upon host cell actin reassembly, revealing an unanticipated role for cellular actin remodelling in the T. cruzi invasion process.  相似文献   

9.
Previous studies at our laboratory have shown that an antibody (antiegressin) present in the serum of chronically infected mice is capable of inhibiting the egress of Trypanosoma cruzi from infected BALB/c fibroblasts. We have used this in vitro system to evaluate whether human chagasic serum is also capable of inhibiting T. cruzi egress. BALB/c fibroblasts were infected with tissue culture-derived parasites. Five-percent solutions of the individual human serum samples in culture medium were added to the wells, and the number of parasites released was determined at day 5 after infection. The cells cultured with serum from infected individuals released between 37% and 72% fewer parasites than those cultured with control serum. A similar reduction in parasite egress resulted from incubation with the protein-A purified IgG fraction from 3 of these human samples. Immunocytochemical staining employing antineuraminidase antibodies supported the notion that the reduction in parasite levels is due to inhibition at the point of parasite egress. These results indicate that human serum of individuals infected with T. cruzi is capable of inhibiting release of the parasite from infected tissue culture cells and that the phenomenon of egress-inhibition may be relevant during infection of human subjects.  相似文献   

10.
A portal venous injection of allogeneic donor cells is known to prolong the survival of subsequently transplanted allografts. In this study, we investigated the role of liver sinusoidal endothelial cells (LSECs) in immunosuppressive effects induced by a portal injection of allogeneic cells on T cells with indirect allospecificity. To eliminate the direct CD4+ T cell response, C57BL/6 (B6) MHC class II-deficient C2tatm1Ccum (C2D) mice were used as donors. After portal injection of irradiated B6 C2D splenocytes into BALB/c mice, the host LSECs that endocytosed the irradiated allogeneic splenocytes showed enhanced expression of MHC class II molecules, CD80, and Fas ligand (FasL). Due to transmigration across the LSECs from BALB/c mice treated with a portal injection of B6 C2D splenocytes, the naive BALB/c CD4+ T cells lost their responsiveness to stimulus of BALB/c splenic APCs that endocytose donor-type B6 C2D alloantigens, while maintaining a normal response to stimulus of BALB/c splenic APCs that endocytose third-party C3H alloantigens. Similar results were not observed for naive BALB/c CD4+ T cells that transmigrated across the LSECs from BALB/c FasL-deficient mice treated with a portal injection of B6 C2D splenocytes. Adaptive transfer of BALB/c LSECs that had endocytosed B6 C2D splenocytes into BALB/c mice via the portal vein prolonged the survival of subsequently transplanted B6 C2D hearts; however, a similar effect was not observed for BALB/c FasL-deficient LSECs. These findings indicate that LSECs that had endocytosed allogeneic splenocytes have immunosuppressive effects on T cells with indirect allospecificity, at least partially via the Fas/FasL pathway.  相似文献   

11.
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection.  相似文献   

12.
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease. The chronic stage of infection is characterized by a production of neutralizing antibodies in the vertebrate host. A polyclonal antibody, anti-egressin, has been found to inhibit egress of parasites from the host cell late in the intracellular cycle, after the parasites have transformed from the replicative amastigote into the trypomastigote. It has also been found that BALB/c mouse fibroblasts in the late stages of parasite infection become permeable to molecules as large as antibodies, leading to the possibility that anti-egressin affects the intracellular parasites. This project addresses the fate of the intracellular trypomastigotes that have been inhibited from egressing the host cell. Extended cultures of infected fibroblasts treated with chronic mouse serum reduced parasite egress at all time points measured. Parasites released from infected fibroblasts treated with chronic serum had a reduced ability to infect fibroblasts in culture, yet did not lose infectivity entirely. Absorption of chronic serum with living trypomastigotes removed the anti-egressin effect. The possibility that the target of anti-egressin is a parasite surface component is further indicated by the agglutination of extracellular trypomastigotes by chronic serum. The possibility that cross-linking by antibody occurs intracellularly, thus inhibiting egress, was reinforced by cleaving purified IgG into Fab fragments, which did not inhibit egress when added to infected cultures. From this work, it is proposed that the current, best explanation of the mechanism of egress inhibition by anti-egressin is intracellular agglutination, preventing normal parasite-driven egress.  相似文献   

13.
Autoreactive T cells responding to systemic autoantigens have been characterized in patients and mice with autoimmune diseases and in healthy individuals. Using peptides covering the whole sequence of histone H4, we characterized several epitopes recognized by lymph node Th cells from nonsystemic lupus erythematosus-prone mice immunized with the same peptides, the H4 protein, or nucleosomes. Multiple T epitopes were identified after immunizing H-2d BALB/c mice with H4 peptides. They spanned residues 28-42, 30-47, 66-83, 72-89, and 85-102. Within the region 85-102, a minimal CD4+ T epitope containing residues 88-99 was characterized. Although Abs to peptide 88-99 recognized H4, this peptide does not contain a dominant B cell epitope recognized by anti-H4 Abs raised in BALB/c mice or Abs from NZB/NZW H-2d/z lupus mice. Th cells primed in vivo with H4 responded to H4, but not to peptide 88-99. However, this peptide was able to stimulate the proliferation and IL-2 secretion of Th cells generated after immunization with nucleosomes. H488-99 thus represents a cryptic epitope with regard to H4 and a supradominant epitope presented by nucleosome, a supramolecular complex that plays a key role in lupus. This study shows that in the normal repertoire of naive BALB/c mice, autoreactive Th cells specific for histones are not deleted. The reactivity of these Th cells seems to be relatively restricted and resembles that of Th clones generated from SNF1 ((SWR x NZB)F1; I-Ad/q) lupus mice described earlier.  相似文献   

14.
The immunity of BALB.B mice to syngeneic Gross murine leukemia virus (MuLV)-induced B.GV cells was studied at various times after infection by Trypanosoma cruzi. BALB.B mice chronically infected by the parasite do not develop an effective immune response against B.GV tumor cells, and B.GV tumor growth in vivo is consequently facilitated. The tumor-specific cytolytic T lymphocyte (CTL) compartment in these mice was studied in vitro because CTL are known to participate actively in syngeneic tumor rejection. These analyses showed that: a) CTL differentiation is suppressed in mice with chronic T. cruzi infections; b) suppression is at the level of CTL precursor cell activation; c) suppression is not antigen-specific; and d) suppression is mediated by macrophages and Lyt-2+ T lymphocytes.  相似文献   

15.
Abstract C57BL/10 and BALB/c mice differ in their abilities to clear infections with the intracellular bacterium Brucella abortus strain 2308. We have previously reported that in vivo neutralization of IL-10 in the susceptible BALB/c mice results in significantly fewer bacteria in their spleens 1 week after infection with 5 × 103 colony forming units (CFU) of 2308. Here we extend those studies and report a similar effect when IL-4 is neutralized. In contrast, in the more resistant C57BL/10 mice infected with 5 × 103 CFU, neither neutralization of IL-10 nor IL-4 significantly decreased the level of infection nor did it in either BALB/c or C57BL/10 mice infected with a 1000-fold higher dose of strain 2308. While splenocytes from the later mentioned groups of 1 produced IL-10 in response to stimulation with brucella antigen, they also produced higher levels of interferon (IFN)-γ than those from BALB/c mice infected with the low challenge dose of 5 × 103 CFU. Results of in vivo neutralization of IFN-γ by monoclonal antibodies (MAb) reported here and elsewhere indicated that IFN-γ is important for control; thus, we postulate that the higher levels of IFN-γ may override the detrimental effects of Th2 cytokines. In vitro studies also showed that macrophages from the more resistant C57BL/10 mice were less susceptible to the ability of IL-10 to decrease anti-brucella activities than were BALB/c macrophages. CD4+ T cells were principally responsible for the production of IL-10 in BALB/c but not C57BL/10 splenocyte populations. C57BL/10 splenocytes produced more IFN-γ than those from BALB/c mice in response to stimulation with brucella antigens. These differences between BALB/c and C57BL/10 mice may contribute to the superior capacity of C57BL/10 mice to control infections with B. abortus strain 2308.  相似文献   

16.
A rabbit antibody to the neuraminidase of the infective form of Trypanosoma cruzi identifies a subpopulation of trypomastigotes that expresses neuraminidase. Complement-mediated lysis by the antibody selectively destroys 30 to 40% of the trypomastigotes, supporting the conclusion that the immune antibody binds to a subset of parasites. The trypomastigotes that react with the immune antibody are the only ones expressing neuraminidase because the trypomastigotes that survive complement-mediated lysis are depleted of neuraminidase activity. The enzyme seems to negatively modulate infection in vitro, since infection of host cells by trypomastigotes is enhanced when neuraminidase activity is blocked by antineuraminidase antibody; infection is also enhanced when the infecting trypomastigotes have been depleted of parasites that express neuraminidase. Addition of exogenous neuraminidase (from Vibrio cholerae) to trypomastigotes treated with immune antibody, reverts the enhancement observed when infection takes place in the presence of antibody to T. cruzi neuraminidase only. Addition of V. cholerae neuraminidase in the absence of immune antibodies has no effect on infection. These results show that T. cruzi neuraminidase depresses infection and also suggest that sialic acid is involved in the parasite-host cell interaction. The antibody to T. cruzi neuraminidase recognizes on the surface of live trypomastigotes a set of proteins with high m.w. (165,000 to 200,000) and also two antigens of 79,000 to 82,000. The high m.w. proteins appear to be associated with neuraminidase activity as shown by renaturation experiments of released enzyme fractionated on a sodium dodecyl sulfate-polyacrylamide gel.  相似文献   

17.
With the purpose of studying the antigenic role that factors excreted by Leishmania amastigotes might have during murine infection, immunoblots were carried out with sera from C57BL/6 and BALB/c mice infected with two strains of Leishmania (L.) amazonensis, NR and IFLA/BR. Both strains differ widely in virulence in BALB/c mice. BALB/c but not C57BL/6 sera recognized several excretion products. The excreted antigens showed a strong response towards IgG1 and IgG2a isotypes whilst they reacted only weakly against IgG2b and IgG3. A low-molecular weight antigen (about 20 kDa) excreted by both Leishmania strains was strongly recognized by IgG1 from BALB/c mice sera infected with IFLA/BR, the most virulent strain. Sera from NR infected mice were incapable of recognizing this antigen in spite of its presence in NR excreted products. The results indicate that the humoral immune response to excreted antigens of amastigotes depends on both the host genetic background and the parasite strain.  相似文献   

18.
Proteins containing tandemly repetitive sequences are present in several immunodominant protein antigens in pathogenic protozoan parasites. The tandemly repetitive Trypanosoma cruzi B13 protein is recognized by IgG antibodies from 98% of Chagas' disease patients. Little is known about the molecular mechanisms that lead to the immunodominance of the repeated sequences, and there is limited information on T cell epitopes in such repetitive antigens. We finely characterized the T cell recognition of the tandemly repetitive, degenerate B13 protein by T cell lines, clones and PBMC from Chagas' disease cardiomyopathy (CCC), asymptomatic T. cruzi infected (ASY) and non-infected individuals (N). PBMC proliferative responses to recombinant B13 protein were restricted to individuals bearing HLA-DQA1*0501(DQ7), -DR1, and -DR2; B13 peptides bound to the same HLA molecules in binding assays. The HLA-DQ7-restricted minimal T cell epitope [FGQAAAG(D/E)KP] was identified with an overlapping combinatorial peptide library including all B13 sequence variants in T. cruzi Y strain B13 protein; the underlined small residues GQA were the major HLA contact residues. Among natural B13 15-mer variant peptides, molecular modeling showed that several variant positions were solvent (TCR)-exposed, and substitutions at exposed positions abolished recognition. While natural B13 variant peptide S15.9 seems to be the immunodominant epitope for Chagas' disease patients, S15.4 was preferentially recognized by CCC rather than ASY patients, which may be pathogenically relevant. This is the first thorough characterization of T cell epitopes of a tandemly repetitive protozoan antigen and may suggest a role for T cell help in the immunodominance of protozoan repetitive antigens.  相似文献   

19.
The origin of Trypanosoma cruzi slender and broad forms found in the circulation of the mammalian host has remained obscure and, unlike what has been proposed for African trypanosomes, no precise form-function relationship has been ascribed to them. We show here that parasites circulating in the blood of infected animals display a high degree of polymorphism. Around 10% of the forms found circulating in mice during the acute phase of infection were amastigotes, and the other 90% included slender and broad trypomastigotes and intermediate forms between amastigotes and trypomastigotes. Slender trypomastigotes, from blood or cell culture, undergo extracellularly morphological rearrangements in which the parasites become gradually broader and transform into amastigotes. By scanning electron microscopy a progressive internalization of the flagellum and reorganization of the cell shape in a helical fashion were observed in parasites undergoing transformation. After 48 hr of extracellular incubation the parasite population consisted exclusively of amastigotes with a short protruding flagellum. The morphological changes were associated with the expression of different surface antigens defined by monoclonal antibodies: the trypomastigote-specific antigens Ssp-1 (a 100-120-150-Mr glycoprotein), Ssp-2 (a 70-Mr glycoprotein), Ssp-3 (undefined), and Ssp-4, an amastigote-specific surface antigen. Ssp-4 was also detected on intracellular amastigotes (in vitro and in vivo). We conclude that trypomastigotes are programmed to develop into amastigotes whether or not they enter cells, and that the differentiation can occur in the blood of the vertebrate host. These findings raise some questions regarding conventional views on the life cycle of T. cruzi.  相似文献   

20.
Trypanosoma cruzi expresses oligopeptidase B and cathepsin B that have important functions in the interaction with mammalian host cells. In this study, we demonstrated that sera from both chagasic rabbits and humans have specific antibodies to highly purified native oligopeptidase B and cathepsin B. Levels of antibodies to cathepsin B were higher than those observed to oligopeptidase B by absorbance values recorded upon ELISA. We next showed that 90% and 30% of sera from individuals with mucocutaneous leishmaniasis have antibodies that recognize oligopeptidase B and cathepsin B as antigens, respectively. In addition, 55% and 40% of sera from kala-azar patients have antibodies to oligopeptidase B and cathepsin B, respectively. Sera from malaria patients did not recognize the proteases as antigens. Despite high levels of specific antibodies, sera from T. cruzi-infected patients did not inhibit the activities of either oligopeptidase B or cathepsin B. Furthermore, sera or IgG purified from either infected or non-infected individuals enhanced the enzymatic activity of the secreted oligopeptidase B. Oligopeptidase B secreted by trypomastigotes and cathepsin B released upon parasite lysis retain their enzymatic activities and may be associated with Chagas' disease pathogenesis by hydrolyzing host proteins and inducing host immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号