首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Understanding the electric double layer is essential for achieving efficient electrochemical energy storage technologies. A conventional solid–liquid electrode interface suffers from serious self‐discharge and a narrow voltage window, which makes the development of a solid–solid interface imperative. However, an in‐depth understanding of the electric double layer with a solid–solid interface is lacking. Here, a solid–solid interfacial electric double layer is proposed with excellent electrochemical performance. The solid layer is constructed by the electrochemical decomposition of lithium difluoro(oxalate)borate, which provides a desolvated environment for the establishment of a electric double layer. This makes a stronger interaction between the electrode surface and the ions. Based on this unique property, it is found that the solid–solid interfacial electric double layer has an increased capacitance, which suggests a way to develop high‐energy electrochemical capacitors.  相似文献   

2.
Rechargeable Li‐ion batteries (LIBs) are electrochemical storage device widely applied in electric vehicles, mobile electronic devices, etc. However, traditional LIBs containing liquid electrolytes suffer from flammability, poor electrochemical stability, and limited operational temperature range. Replacement of the liquid electrolytes with inorganic solid‐state electrolytes (SSEs) would solve this problem. However, several critical issues, such as poor interfacial compatibility, low ionic conductivity at ambient temperatures, etc., need to be surmounted before the commercialization of all‐solid‐state Li‐ion batteries (ASSLIBs). In this review, a brief historical context for the inorganic SSEs is described first. Then, two critical issues in the ASSLIBs are highlighted: interfacial incompatibility of the electrodes and SSEs and internal stresses. For the interfacial incompatibility, the discussion is focused on the dynamic characterization of the electrode/SSE interfaces, the origin and evolution of the interfacial resistance, and interface engineering to minimize the interfacial resistance. The internal stresses in the ASSLIBs are another major concern because rigid contacts are introduced. Stress generation, stress evolution during battery cycling, stress measurement/simulation, and ways to alleviate the stresses are outlined in detail. Finally, current challenges and perspectives for future development of the inorganic SSEs and ASSLIBs are outlined.  相似文献   

3.
Supercapacitors (SCs), also called electrochemical capacitors, often show high power density, excellent charge/discharge rates, and long cycle life. The recent development of flexible and wearable electronic devices requires that their power sources be sufficiently compact and flexible to match these electronic components. Therefore, flexible SCs have attracted much attention to power current advanced electronics that can be flexible and wearable. In the past several years, many different strategies have been developed to programmably construct different nanocarbon materials into bendable electrode architectures. Furthermore, flexible SC devices with simplified configurations have also been designed based on these nanocarbon‐based architectures. Here, recent developments in the programmable assembly of bendable architectures based on nanocarbon materials are presented. Additionally, the design of flexible nanocarbon‐based SC devices with various configurations is highlighted. The progress made recently paves the way for further development of nanocarbon architectures and corresponding flexible SC devices. Future development and prospects in this area are also analyzed.  相似文献   

4.
Lithium–sulfur (Li–S) batteries, due to the high theoretical energy density, are regarded as one of the most promising candidates for breaking the limitations of energy‐storage system based on Li‐ion batteries. Tremendous efforts have been made to meet the challenge of high‐performance Li–S batteries, in which a sulfur loading of above 5 mg cm?2 delivers an areal capacity higher than 5 mAh cm?2 without compromising specific capacity and cycling stability for practical applications. However, serious problems have been exposed during the scaling up of the sulfur loading. In this review, based on mechanistic insights into structural configuration, catalytic conversion, and interfacial engineering, the problems and corresponding strategies in the development of high‐loading Li–S batteries are highlighted and discussed, aiming at bridging the gap between fundamental research and practical cell‐level designs. Stemming from the current achievements, future directions targeting the high‐energy‐density Li–S batteries for commercialization are proposed.  相似文献   

5.
Two‐dimensional (2D) nanomaterials (i.e., graphene and its derivatives, transition metal oxides and transition metal dichalcogenides) are receiving a lot attention in energy storage application because of their unprecedented properties and great diversities. However, their re‐stacking or aggregation during the electrode fabrication process has greatly hindered their further developments and applications in rechargeable lithium batteries. Recently, rationally designed hierarchical structures based on 2D nanomaterials have emerged as promising candidates in rechargeable lithium battery applications. Numerous synthetic strategies have been developed to obtain hierarchical structures and high‐performance energy storage devices based on these hierarchical structure have been realized. This review summarizes the synthesis and characteristics of three styles of hierarchical architecture, namely three‐dimensional (3D) porous network nanostructures, hollow nanostructures and self‐supported nanoarrays, presents the representative applications of hierarchical structured nanomaterials as functional materials for lithium ion batteries, lithium‐sulfur batteries and lithium‐oxygen batteries, meanwhile sheds light particularly on the relationship between structure engineering and improved electrochemical performance; and provides the existing challenges and the perspectives for this fast emerging field.  相似文献   

6.
High‐performance rechargeable all‐solid‐state lithium metal batteries with high energy density and enhanced safety are attractive for applications like portable electronic devices and electric vehicles. Among the various solid electrolytes, argyrodite Li6PS5Cl with high ionic conductivity and easy processability is of great interest. However, the low interface compatibility between sulfide solid electrolytes and high capacity cathodes like nickel‐rich layered oxides requires many thorny issues to be resolved, such as the space charge layer (SCL) and interfacial reactions. In this work, in situ electrochemical impedance spectroscopy and in situ Raman spectroscopy measurements are performed to monitor the detailed interface evolutions in a LiNi0.8Co0.1Mn0.1O2 (NCM)/Li6PS5Cl/Li cell. Combining with ex situ characterizations including scanning electron microscopy and X‐ray photoelectron spectroscopy, the evolution of the SCL and the chemical bond vibration at NCM/Li6PS5Cl interface during the early cycles is elaborated. It is found that the Li+ ion migration, which varies with the potential change, is a very significant cause of these interface behaviors. For the long‐term cycling, the SCL, interfacial reactions, lithium dendrites, and chemo‐mechanical failure have an integrated effect on interfaces, further deteriorating the interfacial structure and electrochemical performance. This research provides a new insight on intra and intercycle interfacial evolution of solid‐state batteries.  相似文献   

7.
The integration of graphene nanosheets on the macroscopic level using a self‐assembly method has been recognized as one of the most effective strategies to realize the practical applications of graphene materials. Here, a facile and scalable method is developed to synthesis two types of graphene‐based networks, manganese dioxide (MnO2)–graphene foam and carbon nanotube (CNT)–graphene foam, by solution casting and subsequent electrochemical methods. Their practical applications in flexible all‐solid‐state asymmetric supercapacitors are explored. The proposed method facilitates the structural integration of graphene foam and the electroactive material and offers several advantages including simplicity, efficiency, low‐temperature, and low‐cost. The as‐prepared MnO2–graphene and CNT–graphene electrodes exhibit high specific capacitances and rate capability. By using polymer gel electrolytes, a flexible all‐solid‐state asymmetric supercapacitor was synthesized with MnO2–graphene foam as the positive electrode and CNT‐graphene as the negative electrode. The asymmetric supercapacitors can be cycled reversibly in a high‐voltage region of 0 to 1.8 V and exhibit high energy density, remarkable rate capability, reasonable cycling performance, and excellent flexibility.  相似文献   

8.
Phosphorus‐based materials are promising for high‐performance lithium‐ion battery (LIB) applications due to their high theoretical specific capacity. Currently, the existing physical methods render great difficulty toward rational engineering on the nanostructural phosphorus or its composites, thus limiting its high‐rate LIB applications. For the first time, a sublimation‐induced synthesis of phosphorus‐based composite nanosheets by a chemistry‐based solvothermal reaction is reported. Its formation mechanism involves solid–vapor–solid transformation driven by continuous vaporization–condensation process, as well as subsequent bottom‐up assembly growth. The proof‐of‐concept LIBs composed of the phosphorus‐based nanosheets achieve a high capacity of 630 mAh g?1 at an ultrahigh current density of 20 A g?1, which is attributed to efficient lithium‐ion diffusion and electron transfer. Such simple sublimation‐induced transformation opens up new prospects for rational engineering of phosphorus‐based materials for enhancing electrochemical performance.  相似文献   

9.
Currently, tremendous efforts are being devoted to develop high‐performance electrochemical energy‐storage materials and devices. Conventional electrochemical energy‐storage systems are confronted with great challenges to achieve high energy density, long cycle‐life, excellent biocompatibility and environmental friendliness. The biological energy metabolism and storage systems have appealing merits of high efficiency, sophisticated regulation, clean and renewability, and the rational design and fabrication of advanced electrochemical energy‐storage materials and smart devices inspired by nature have made some breakthrough progresses, recently. In this review, we summarize the latest developments in the field of nature‐inspired electrochemical energy‐storage materials and devices. Specifically, the nature‐inspired exploration, preparation and modification of electrochemical energy‐storage related materials including the active materials, binders, and separators are introduced. Furthermore, nature‐inspired design and fabrication of smart energy‐storage devices such as self‐healing supercapacitors, supercapacitors with ultrahigh operating voltage, and self‐rechargeable batteries are also discussed. The review aims to provide insights and expanded research perspectives for further study in this exciting field based on our comprehensive discussions.  相似文献   

10.
In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal‐air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li‐air and Zn‐air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li‐air and Zn‐air batteries, with the aim of providing a better understanding of the new electrochemical systems.  相似文献   

11.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

12.
Serious environmental problems, growing demand for energy, and the pursuit of environmental‐friendly, sustainable, and effective energy technologies to store and transform clean energy have all drawn great attention recently. As a part of the special issue “Energy Research in National Institute of Advanced Industrial Science and Technology (AIST)” this review systematically summarizes the research progress of metal–organic framework (MOF) composites and derivatives in energy applications, including catalytic CO oxidation, liquid‐phase chemical hydrogen storage, and electrochemical energy storage and conversion. Furthermore, the correlation between MOF‐based structures, synthetic strategies, and their corresponding performances is carefully discussed. The further scope and opportunities, expected improvements and challenges are also discussed. This review will not only benefit development of more feasible protocols to fabricate nanostructures for energy systems but also stimulate further interest in MOF composites and derivatives, for energy applications.  相似文献   

13.
Thermoelectric (TE) materials have the capability of converting heat into electricity, which can improve fuel efficiency, as well as providing robust alternative energy supply in multiple applications by collecting wasted heat, and therefore, assisting in finding new energy solutions. In order to construct high performance TE devices, superior TE materials have to be targeted via various strategies. The development of high performance TE devices can broaden the market of TE application and eventually boost the enthusiasm of TE material research. This review focuses on major novel strategies to achieve high‐performance TE materials and their applications. Manipulating the carrier concentration and band structures of materials are effective in optimizing the electrical transport properties, while nanostructure engineering and defect engineering can greatly reduce the thermal conductivity approaching the amorphous limit. Currently, TE devices are utilized to generate power in remote missions, solar–thermal systems, implantable or/wearable devices, the automotive industry, and many other fields; they are also serving as temperature sensors and controllers or even gas sensors. The future tendency is to synergistically optimize and integrate all the effective factors to further improve the TE performance, so that highly efficient TE materials and devices can be more beneficial to daily lives.  相似文献   

14.
Owing to the ever‐increasing safety concerns about conventional lithium‐ion batteries, whose applications have expanded to include electric vehicles and grid‐scale energy storage, batteries with solidified electrolytes that utilize nonflammable inorganic materials are attracting considerable attention. In particular, owing to their superionic conductivities (as high as ≈10?2 S cm?1) and deformability, sulfide materials as the solid electrolytes (SEs) are considered the enabling material for high‐energy bulk‐type all‐solid‐state batteries. Herein the authors provide a brief review on recent progress in sulfide Li‐ and Na‐ion SEs for all‐solid‐state batteries. After the basic principles in designing SEs are considered, the experimental exploration of multicomponent systems and ab initio calculations that accelerate the search for stronger candidates are discussed. Next, other issues and challenges that are critical for practical applications, such as instability in air, electrochemical stability, and compatibility with active materials, are discussed. Then, an emerging progress in liquid‐phase synthesis and solution process of SEs and its relevant prospects in ensuring intimate ionic contacts and fabricating sheet‐type electrodes is highlighted. Finally, an outlook on the future research directions for all‐solid‐state batteries employing sulfide superionic conductors is provided.  相似文献   

15.
In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal‐air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li‐air and Zn‐air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li‐air and Zn‐air batteries, with the aim of providing a better understanding of the new electrochemical systems.  相似文献   

16.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

17.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   

18.
The increasing demand for replacing conventional fossil fuels with clean energy or economical and sustainable energy storage drives better battery research today. Sodium‐ion batteries (SIBs) are considered as a promising alternative for grid‐scale storage applications due to their similar “rocking‐chair” sodium storage mechanism to lithium‐ion batteries, the natural abundance, and the low cost of Na resources. Searching for appropriate electrode materials with acceptable electrochemical performance is the key point for development of SIBs. Layered transition metal oxides represent one of the most fascinating electrode materials owing to their superior specific capacity, environmental benignity, and facile synthesis. However, three major challenges (irreversible phase transition, storage instability, and insufficient battery performance) are known for cathodes in SIBs. Herein, a comprehensive review on the latest advances and progresses in the exploration of layered oxides for SIBs is presented, and a detailed and deep understanding of the relationship of phase transition, air stability, and electrochemical performance in layered oxide cathodes is provided in terms of refining the structure–function–property relationship to design improved battery materials. Layered oxides will be a competitive and attractive choice as cathodes for SIBs in next‐generation energy storage devices.  相似文献   

19.
Covalent–organic frameworks (COFs), featuring structural diversity, framework tunability and functional versatility, have emerged as promising organic electrode materials for rechargeable batteries and garnered tremendous attention in recent years. The adjustable pore configuration, coupled with the functionalization of frameworks through pre‐ and post‐synthesis strategies, enables a precise customization of COFs, which provides a novel perspective to deepen the understanding of the fundamental problems of organic electrode materials. In this review, a summary of the recent research into COFs electrode materials for rechargeable batteries including lithium‐ion batteries, sodium‐ion batteries, potassium‐ion batteries, and aqueous zinc batteries is provided. In addition, this review will also cover the working principles, advantages and challenges, strategies to improve electrochemical performance, and applications of COFs in rechargeable batteries.  相似文献   

20.
Ionic liquids (ILs) are important electrolytes for applications in electrochemical devices. An emerging trend in ILs research is their hybridization with solid matrices, named ionogels. These ionogels can not only overcome the fluidity of ILs but also exhibit high mechanical strength of the solid matrix. Therefore, they show promise for applications in building lithium batteries. In this review, various types of solid matrices for confining ILs are summarized, including nonmetallic oxides, metal oxides, IL‐tethered nanoparticles, functionalized SiO2, metal–organic frameworks, and other structural materials. The synthetic strategies for ionogels are first documented, focusing on physical confinement and covalent grafting. Then, the structure, ionic conductivity, thermal stability, and electrochemical stability of ionogels are addressed in detail. Furthermore, the authors highlight the potential applications of state‐of‐art ionogels in lithium batteries. The authors conclude this review by outlining the remaining challenges as well as personal perspectives on this hot area of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号