首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A power conversion efficiency (PCE) of 16.2% is achieved in PM6:BTP‐4F‐12 based organic photovoltaics (OPVs). On the basis of efficient binary OPVs, a series of ternary OPVs are constructed by incorporating MeIC as the third component. The open circuit voltages (VOCs) of ternary OPVs can be gradually increased along with the incorporation of MeIC, suggesting the formation of an alloy state between BTP‐4F‐12 and MeIC with good compatibility. The energy loss (Eloss) of ternary OPVs can be decreased compared with that of two binary OPVs, contributing to the VOC improvement of ternary OPVs. The short circuit current density (JSC) and fill factor (FF) of ternary OPVs can also be simultaneously enhanced with MeIC content up to 10 wt% in acceptors, leading to 17.4% PCE of the optimized ternary OPVs. The JSC and FF improvement of ternary OPVs is thought to result from the optimized ternary active layers with more efficient photon harvesting, exciton dissociation and charge transport. The 17.4% PCE and 79.2% FF is among the top values of ternary OPVs. This work indicates that a ternary strategy is an emerging method to simultaneously minimize Eloss and optimize photon harvesting as well as improve the morphology of active layers for realizing performance improvement for OPVs.  相似文献   

2.
A new series of organic salts with selective near‐infrared (NIR) harvesting to 950 nm is reported, and anion selection and blending is demonstrated to allow for fine tuning of the open‐circuit voltage. Extending photoresponse deeper into the NIR is a significant challenge facing small molecule organic photovoltaics, and recent demonstrations have been limited by open‐circuit voltages much lower than the theoretical and practical limits. This work presents molecular design strategies that enable facile tuning of energy level alignment and open‐circuit voltages in organic salt‐based photovoltaics. Anions are also shown to have a strong influence on exciton diffusion length. These insights provide a clear route toward achieving high efficiency transparent and panchromatic photovoltaics, and open up design opportunities to rapidly tailor molecules for new donor–acceptor systems.  相似文献   

3.
The role of excess excitation energy on long‐range charge separation in organic donor/acceptor bulk heterojunctions (BHJs) continues to be unclear. While ultrafast spectroscopy results argue for efficient charge separation through high‐energy charge‐transfer (CT) states within the first picosecond (ps) of excitation, charge collection measurements suggest excess photon energy does not increase the current density in BHJ devices. Here, the population dynamics of charge‐separated polarons upon excitation of high‐energy polymer states and low‐energy interfacial CT states in two polymer/fullerene blends from ps to nanosecond time scales are studied. It is observed that the charge‐separation dynamics do not show significant dependence on excitation energy. These results confirm that excess exciton energy is not necessary for the effective generation of charges.  相似文献   

4.
Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC61BM. These devices achieve open‐circuit voltages (Voc) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. Voc’s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage‐dependent, steady state and time‐resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of –0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with Voc values above 1.0 V and that non‐fullerene acceptor materials with large optical gaps (>1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of Voc exceeding 1.0 V.  相似文献   

5.
Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) “super yellow” poly(p‐phenylene vinylene) (SY‐PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance (EDMR) spectroscopies. It is shown that EDMR spectroscopy allows the unambiguous demonstration of fullerene triplet production in BHJ polymer:fullerene solar cells. EDMR triplet detection under selective photoexcitation of each blend component and of the interfacial charge transfer (CT) state reveals that low lying fullerene TEs are produced by direct intersystem crossing from singlet excitons (SEs). The direct CT‐TE recombination pathway, although energetically feasible, is kinetically suppressed in these devices. However, high energy CT states in the CT manifold can contribute to the population of the fullerene triplet state via a direct CT‐SE conversion. This undesirable energetic alignment could be one of the causes for the severe reduction in photocurrent observed when the open‐circuit voltage of polymer:fullerene solar cells is pushed to 1.0 V or beyond.  相似文献   

6.
The energy landscape in organic semiconducting materials greatly influences charge and exciton behavior, which are both critical to the operation of organic electronic devices. These energy landscapes can change dramatically depending on the phases of material present, including pure phases of one molecule or polymer and mixed phases exhibiting different degrees of order and composition. In this work, ultraviolet photoelectron spectroscopy measurements of ionization energies (IEs) and external quantum efficiency measurements of charge‐transfer (CT) state energies (ECT) are applied to molecular photovoltaic material systems to characterize energy landscapes. The results show that IEs and ECT values are highly dependent on structural order and phase composition. In the sexithiophene:C60 system both the IEs of sexithiophene and C60 shift by over 0.4 eV while ECT shifts by 0.5 eV depending on molecular composition. By contrast, in the rubrene:C60 system the IE of rubrene and C60 vary by ≤ 0.11 eV and ECT varies by ≤ 0.04 eV as the material composition varies. These results suggest that energy landscapes can exist whereby the binding energies of the CT states are overcome by energy offsets between charges in CT states in mixed regions and free charges in pure phases.  相似文献   

7.
Triboelectric nanogenerators (TENGs) provide one of the most promising techniques for large‐scale blue energy harvesting. However, lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and tranquil seas. In this paper, an oblate spheroidal TENG assembled by two novel TENG parts is elaborately designed for both situations. The TENG in the upper part is based on spring steel plates without other substrate materials, which makes it possible to output considerable power in rough seas and occupy small space. The TENG in the lower part consists of two copper‐coated polymer films and a rolling ball which can capture small wave energy from tranquil seas. The working mechanism and output performance are systematically studied. A maximum open‐circuit voltage of 281 V and a short‐circuit current of 76 µA can be achieved by one upper part, enough to charge a commercial capacitor for potential applications. More important, the proposed oblate spheroidal shell not only guarantees high sensitivity of the TENG in the lower part, but also qualifies the TENG with unique self‐stabilization and low consumables for the next generation of TENGs with new structural design toward all‐weather blue energy harvesting.  相似文献   

8.
In organic photovoltaic (PV) cells, the well‐established donor‐acceptor (D/A) concept enabling photo‐induced charge transfer between two partners with suitable energy level alignment has proven extremely successful. Nevertheless, the introduction of such a heterojunction is accompanied with additional energy losses as compared to an inorganic homojunction cell, owing to the presence of a charge‐transfer (CT) state at the D/A interface. Based on the principle of detailed balance, a modified Shockley‐Queisser theory is developed including the essential effects of interfacial CT states, that allows for a quantitative assessment of the thermodynamic efficiency limits of molecular D/A solar cells. Key parameters, apart from the optical gap of the absorber material, entering the model are the energy (ECT) and relative absorption strength (αCT) of the CT state. It is demonstrated how the open‐circuit voltage (VOC) and thus the power conversion efficiency are affected by different parameter values. Furthermore, it is shown that temperature dependent device characteristics can serve to determine the CT energy, and thus the upper limit of VOC for a given D/A combination, as well as to quantify non‐radiative recombination losses. The model is applied to diindenoperylene (DIP)‐based photovoltaic devices, with open‐circuit voltages between 0.9 and 1.4 V, depending on the partner, that have recently been reported.  相似文献   

9.
In consideration of the unique advantages of new non‐fullerene acceptors and the tandem‐junction structure, organic photovoltaics (OPVs) based on them are very promising. Studies related to this emerging area began in 2016 with achieved power conversion efficiencies (PCEs) of 8–10%, which have now been boosted to 17%. In this essay, the construction of high‐performance OPVs is discussed, with a focus on combining the advantages of new non‐fullerene acceptors and the tandem‐junction structure. In order to achieve higher PCEs, methods to enable high short‐circuit current density, open‐circuit voltage, and fill factor are discussed. In addition, the stability and reproducibility of high‐efficiency OPVs are also addressed. Herein, it is forecast that the new non‐fullerene acceptors‐based tandem‐junction OPVs will become the next big wave in the field and achieve high PCEs over 20% in the near future. Some promising research directions on this emerging hot topic are proposed which may further push the field into the 25% high efficiency era and considerably advance the technology beyond laboratory research.  相似文献   

10.
In the most efficient solar cells based on blends of a conjugated polymer (electron donor) and a fullerene derivative (electron acceptor),ultrafast formation of charge‐transfer (CT) electronic states at the donor‐acceptor interfaces and efficient separation of these CT states into free charges, lead to internal quantum efficiencies near 100%. However, there occur substantial energy losses due to the non‐radiative recombinations of the charges, mediated by the loweset‐energy (singlet and triplet) CT states; for example, such recombinations can lead to the formation of triplet excited electronic states on the polymer chains, which do not generate free charges. This issue remains a major factor limiting the power conversion efficiencies (PCE) of these devices. The recombination rates are, however, difficult to quantify experimentally. To shed light on these issues, here, an integrated multi‐scale theoretical approach that combines molecular dynamics simulations with quantum chemistry calculations is employed in order to establish the relationships among chemical structures, molecular packing, and non‐radiative recombination losses mediated by the lowest‐energy charge‐transfer states.  相似文献   

11.
The limits of maximizing the open‐circuit voltage Voc in solar cells based on poly[2,7‐(9,9‐didecylfluorene)‐alt‐5,5‐(4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole)] (PF10TBT) as a donor using different fullerene derivatives as acceptor are investigated. Bulk heterojunction solar cells with PF10TBT and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) give a Voc over 1 V and a power conversion efficiency of 4.2%. Devices in which PF10TBT is blended with fullerene bisadduct derivatives give an even higher Voc, but also a strong decrease in short circuit current (Jsc). The higher Voc is attributed to the higher LUMO of the acceptors in comparison to PCBM. By investigating the photophysics of PF10TBT:fullerene blends using near‐IR photo‐ and electroluminescence, time‐resolved photoluminescence, and photoinduced absorption we find that the charge transfer (CT) state is not formed efficiently when using fullerene bisadducts. Hence, engineering acceptor materials with a LUMO level that is as high as possible can increase Voc, but will only provide a higher power conversion efficiency, when the quantum efficiency for charge transfer is preserved. To quantify this, we determine the CT energy (ECT) and optical band gap (Eg), defined as the lowest first singlet state energy ES1 of either the donor or acceptor, for each of the blends and find a clear correlation between the free energy for photoinduced electron transfer and Jsc. We find that Eg ? qVoc > 0.6 eV is a simple, but general criterion for efficient charge generation in donor‐acceptor blends.  相似文献   

12.
For the commercial development of organic photovoltaics (OPVs), laboratory‐scale OPV technology must be translated to large area modules. In particular, it is important to develop high‐efficiency polymers that can form thick (>100 nm) bulk heterojunction (BHJ) films over large areas with optimal morphologies for charge generation and transport. Here, D1‐A‐D2‐A random terpolymers composed of 2,2′‐bithiophene with various proportions of 5,6‐difluoro‐4,7‐bis(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole and 5,6‐difluoro‐2,1,3‐benzothiadiazole (FBT) are synthesized. It is found that incorporating small proportions of FBT into the polymer not only conserves the high crystallinity and favorable face‐on orientation of the D‐A copolymer FBT‐Th4 but also improves the nanoscale phase separation of the BHJ film. Consequently, the random terpolymer PDT2fBT‐BT10 exhibits a much improved solar cell efficiency of 10.31% when compared to that of the copolymer FBT‐Th4 (8.62%). Moreover, due to this polymer's excellent processability and suppressed overaggregation, OPVs with 1 cm2 active area based on 351 nm thick PDT2fBT‐BT10 BHJs exhibit high photovoltaic performance of 9.42%, whereas rapid efficiency decreases arise for FBT‐Th4‐based OPVs for film thicknesses above 300 nm. It is demonstrated that this random terpolymer can be used in large area and thick BHJ OPVs, and guidelines for developing polymers that are suitable for large‐scale printing technologies are presented.  相似文献   

13.
We report an optical investigation of conjugated polymer (P3HT)/fullerene (PCBM) semiconductor blends sensitized by near‐infrared absorbing quantum dots (PbS QDs). A systematic series of samples that include pristine, binary and ternary blends of the materials are studied using steady‐state absorption, photoluminescence (PL) and ultrafast transient absorption. Measurements show an enhancement of the absorption strength in the near‐infrared upon QD incorporation. PL quenching of the polymer and the QD exciton emission is observed and predominantly attributed to intermaterial photoinduced charge transfer processes. Pump‐probe experiments show photo‐excitations to relax via an initial ultrafast decay while longer‐lived photoinduced absorption is attributed to charge transfer exciton formation and found to depend on the relative ratio of QDs to P3HT:PCBM content. PL experiments and transient absorption measurements indicate that interfacial charge transfer processes occur more efficiently at the fullerene/polymer and fullerene/nanocrystal interfaces compared to polymer/nanocrystal interfaces. Thus the inclusion of the fullerene seems to facilitate exciton dissociation in such blends. The study discusses important and rather unexplored aspects of exciton recombination and charge transfer processes in ternary blend composites of organic semiconductors and near‐infrared quantum dots for applications in solution‐processed photodetectors and solar cells.  相似文献   

14.
Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.  相似文献   

15.
All‐inorganic CsPbIBr2 perovskite solar cells (pero‐SCs) exhibit excellent overall stability, but their power conversion efficiencies (PCEs) are greatly limited by their wide bandgaps. Integrated solar cells (ISCs) are considered to be an emergent technology that could extend their photoresponse by directly stacking two distinct photoactive layers with complementary bandgaps. However, rising photocurrents always sacrifice other photovoltaic parameters, thereby leading to an unsatisfactory PCE. Here, a recast strategy is proposed to optimize the spatial distribution components of low‐bandgap organic bulk‐heterojunction (BHJ) film, and is combined with an all‐inorganic perovskite to construct perovskite/BHJ ISCs. With this strategy, the integrated perovskite/BHJ film with a top‐enriched donor‐material spatial distribution is shown to effectively improve ambipolar charge transport behavior and suppress charge carrier recombination. For the first time, the ISC is not only significantly extended and enhanced the photoresponse achieving a 20% increase in current density, but also exhibits a high open‐circuit voltage and fill factor at the same time. As a result, a record PCE of 11.08% based on CsPbIBr2 pero‐SCs is realized; it simultaneously shows excellent long‐term stability against heat and ultraviolet light.  相似文献   

16.
The interplay between nanomorphology and efficiency of polymer‐fullerene bulk‐heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small‐molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2‐b:4,5‐b]dithiophene‐pyrido[3,4‐b]‐pyrazine BDT(PPTh2)2, namely SM1 and SM2, differing by their side‐chains, are examined as a function of solution additive composition. The results show that the additive 1,8‐diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM‐based BHJ solar cells compared with polymer‐fullerene devices. In polymer‐based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM‐based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.  相似文献   

17.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   

18.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

19.
Nickel oxide based p‐type dye‐sensitized solar cells (DSCs) are limited in their efficiencies by poor fill factors (FFs). This work explores the origins of this limitation. Transient absorption spectroscopy identifies fast recombination between the injected hole and the dye anion under applied load as one of the predominant reasons for the poor FF of NiO‐based DSCs. A reduced hole injection efficiency, ηINJ, under applied load is found to play an equally important role. Both, the dye regeneration yield, ΦREG, and ηINJ decrease by approximately 40%–50% when moving from short‐ to open‐circuit conditions. Spectroelectrochemical measurements reveal that the electrochromic properties of NiO are a further limiting factor for the device performance leading to variable light‐harvesting efficiencies, ηLH, under applied load. The peak light‐harvesting efficiency decreases from 63% at short circuit to 57% at 600 mV reducing the FF of NiO DSCs by 5%. This effect is expected to be more pronounced for future devices with higher operating voltages. Incident, photon‐to‐electron conversion efficiency front–back analysis at applied bias is utilized to characterize the interfacial charge recombination. It is found that the recombination between the injected hole and the redox mediator has a surprisingly small effect on the FF.  相似文献   

20.
Photoluminescence studies of the charge transfer exciton emission from a narrow‐bandgap polymer‐based bulk heterojunction are reported. The quantum yield of this emission is as high as 0.03%. Low temperature measurements reveal that while the dynamics of the singlet exciton is slower at low temperature, the dynamics of the charge transfer exciton emission is temperature independent. This behavior rules out any diffusion process of the charge transfer excitons and energy transfer from these interfacial states toward lower lying states. Photoluminescence measurements performed on the device under bias show a reduction (but not the total suppression) of the charge transfer exciton recombination. Finally, based on the low temperature results the role of the charge transfer excitons and the possible pathways to populate them are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号