首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chlorinated phenoxyacetic acids 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4,5-T butoxyethyl ester and the chlorophenols 2,4-dichlorophenol and 2,4,5-trichlorophenol were tested for genotoxicity in the modified Allium test, which is based on exposure to the test chemicals of growing onions. The mean length of growing roots were measured and chromosome damage was recorded. Of the substances tested, MCPA was the most toxic and the chlorophenoxyacetic acids were more toxic than the chlorophenols. The lower threshold values for growth retardation were below 0.1 ppm for the acids, approx. at 0.1 ppm for the ester and less than 5 ppm for the phenols. Though a monocotyledon, Allium cepa was sensitive enough to respond to even low concentrations of these dicotyledon-selecting pesticides.  相似文献   

2.
We have continued our work to develop novel analogues of sialic acid [1–4] that may specifically modulate the interaction between endogenous sialic acid and influenza virus haemagglutinin [3,5,6]. Functional groups of sialic acid that have been implicated for this virus-host recongnition are the glycerol side chain, N-acetyl group and the axially oriented carboxylic acid function In this report we describe the synthesis of two analogues, namely, 4-epi-2-deoxy-2-Heq-N-acetylneuraminic acid (4-epi-2-d-2-Heq-Neu5Ac) and 2,4-dideoxy-2-Heq-N-acetylneuraminic acid (2,4-d2-2-Heq-Neu5Ac).  相似文献   

3.
The effects of exposure to different concentrations of phenoxyherbicides and their metabolites were studied in human erythrocytes, with particular attention to catalase (CAT-EC. 1.11.1. 6- hydrogen peroxide: hydrogen peroxide oxidoreductase). 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dimethylphenol (2, 4-DMP) and 2,4-dichlorophenoxyacetic acid (2,4-D) did not affect CAT activity, but 2,4-dichlorophenol (2,4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) decrease its activity, the latter being the more inhibitory.  相似文献   

4.
2-羟基-6-氧-6-苯基己-2,4-二烯酸水解酶(BphD)是一种多氯联苯微生物降解途径中的关键酶. 本文通过紫外-可见光光谱分别对突变酶S110A和H265A催化过程中酶-底物复合物进行检测,同时利用停流光谱技术对BphD及其突变酶(S110A、H265A和W266A)催化底物2-羟基-6-氧-6-苯基己-2,4-二烯酸(HOPDA)前稳态动力学进行了研究.结果表明,在BphD催化C-C断裂过程中,产物2-羟基戊-2,4-二烯酸(HPD)迅速生成,其速率常数为22 S-1. 底物的消耗(速率常数,22022 S-1和803 S-1)及酶-底物复合物的变化(速率常数,55556 S-1和664 S-1)表明该酶催化过程包括2个动力学阶段:快速底物酮基化作用和C-C键断裂过程.紫外-可见光光谱扫描结果显示,在突变酶S110A的催化过程中,酶-底物复合物在492 nm及510 nm处有最大光吸收,而在突变酶H265A催化中,却没有相似的光吸收,只是在480 nm产生1个新肩峰. BphD及其突变酶S110A、H265A和W266A动力学分析表明,Ser-110主要负责底物C-C键断裂;His-265负责底物由烯醇式向酮式转变,并且与Ser-110和Trp-266共同参与了随后的C-C键断裂过程. 结果揭示,除了传统的催化三联体(Ser-110,Asp-237,His-265)外,Trp-266在该水解酶催化反应中也发挥非常重要的作用,这一发现丰富了C-C水解酶的反应动力学机制.  相似文献   

5.
2,4-Dimethylphenoxyacetic acid and 2,4-dimethylphenol are not growth substrates for Alcaligenes eutrophus JMP 134 although being cooxidized by 2,4-dichlorophenoxyacetate grown cells. None of the relevant catabolic pathways were induced by the dimethylphenoxyacetate. 3,5-Dimethylcatechol is not subject to metacleavage. The alternative ortho-eleavage is also unproductive and gives rise to (+)-4-carboxymethyl-2,4-dimethylbut-2-en-4-olide as a dead-end metabolite. High yields of this metabolite were obtained with the mutant Alcaligenes eutrophys JMP 134-1 which constitutively expresses the genes of 2,4-dichlorophenoxyacetic acid metabolism.  相似文献   

6.
Agent Orange contaminated soils were utilized in direct enrichment culture studies to isolate 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid (2,4-D) mineralizing bacteria. Two bacterial cultures able to grow at the expense of 2,4,5-T and/or 2,4-D were isolated. The 2,4,5-T degrading culture was a mixed culture containing two bacteria, Burkholderia species strain JR7B2 and Burkholderia species strain JR7B3. JR7B3 was able to metabolize 2,4,5-T as the sole source of carbon and energy, and demonstrated the ability to affect metabolism of 2,4-D to a lesser degree. Strain JR7B3 was able to mineralize 2,4,5-T in pure culture and utilized 2,4,5-T in the presence of 0.01 yeast extract. Subsequent characterization of the 2,4-D degrading culture showed that one bacterium, Burkholderiaspecies strain JRB1, was able to utilize 2,4-D as a sole carbon and energy source in pure culture. Polymerase chain reaction (PCR) experiments utilizing known genetic sequences from other 2,4-D and 2,4,5-T degrading bacteria demonstrated that these organisms contain gene sequences similar to tfdA, B, C, E, and R (Strain JRB1) and the tftA, C, and E genes (Strain JR7B3). Expression analysis confirmed that tftA, C, and E and tfdA, B, and C were transcribed during 2,4,5-T and 2,4-D dependent growth, respectively. The results indicate a strong selective pressure for 2,4,5-T utilizing strains under field condition.  相似文献   

7.
A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 microg ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacI(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 microm in diameter, could be seen to develop in each chamber. A 2,4-D degrading transconjugant strain was isolated from the flow cell system belonging to the genus Burkholderia.  相似文献   

8.
Pyrocatechase (catechol 1,2-oxidoreductase (decyclizing), EC 1.13.11.1), a ferric ion-containing dioxygenase from Pseudomonas arvilla C-1, catalyzes the intradiol cleavage of catechol with insertion of 2 atoms of molecular oxygen to form cis,cis-muconic acid. The enzyme also catalyzed the oxidation of various catechol derivatives, including 4-methylcatechol, 4-chlorocatechol, 4-formylcatechol (protocatechualdehyde), 4,5-dichlorocatechol, 3,5-dichlorocatechol, 3-methylcatechol, 3-methoxycatechol, and 3-hydroxycatechol (pyrogallol). All of these substrates gave products having an absorption maximum at around 260 nm, which is characteristic of cis,cis-muconic acid derivatives. However, when 3-methylcatechol was used as substrate, the product formed showed two absorption maxima at 390 and 260 nm. These two absorption maxima were found to be attributable to two different products, 2-hydroxy-6-oxo-2,4-heptadienoic acid and 5-carboxy-2-methyl-2,4-pentadienoic acid (2-methylmuconic acid). The former was produced by the extradiol cleavage between the carbon atom carrying the hydroxyl group and the carbon atom carrying the hydroxyl group and the carbon atom carrying the methyl group; the latter by an intradiol cleavage between two hydroxyl groups. Since these products were unstable, they were converted to and identified as 6-methylpyridine-2-carboxylic acid and 2-methylmuconic acid dimethylester, respectively. Similarly, 3-methoxycatechol gave two products, namely, 2-hydroxy-5-methoxycarbonyl-2,4-pentadienoic acid and 5-carboxy-2-methoxy-2,4-pentadienoic acid (2-methoxymuconic acid). With 3-methylcatechol as substrate, the ratio of intradiol and extradiol cleavage activities of Pseudomonas pyrocatechase during purification was almost constant and was about 17. The final preparation of the enzyme was homogeneous when examined by disc gel electrophoresis and catalyzed both reactions simultaneously with the same ratio as during purification. All attempts to resolve the enzyme into two components with separate activities, including inactivation of the enzyme with urea or heat, treatment with sulfhydryl-blocking reagents or chelating agents, and inhibition of the enzyme with various inhibitors, proved unsuccessful. These results strongly suggest that Pseudomonas pyrocatechase is a single enzyme, which catalyzes simultaneously both intradiol and extradiol cleavages of some 3-substituted catechols.  相似文献   

9.
Both Alcaligenes eutrophus JMP 134 and its plasmid-free derivative Alcaligenes eutrophus JMP 222 utilize 2,6-dinitrophenol as sole source of carbon, energy, and nitrogen. In the presence of ammonia resting cells of these strains release two mol of nitrite per mol of 2,6-dinitrophenol. Alcaligenes eutrophus JMP 222-1D, a mutant of strain JMP 222 obtained by transposon (Tn5) mutagenesis, is able to use 2,6-dinitrophenol as nitrogen source but not as source of carbon and energy. Resting cells of this mutant liberate only one mol of nitrite per mol of 2,6-dinitrophenol. A single metabolite was detected by high-pressure liquid chromatography and identified as 2-hydroxy-5-nitropenta-2,4-dienoic acid from the mass spectrum, the 1H-, and 13C-NMR spectra. Strain JMP 222-1S, a spontaneous mutant of strain JMP 222-1D, accumulates 4-nitropyrogallol which was identified as the initial metabolite of 2,6-dinitrophenol degradation.Non-standard abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,6-DNP 2,6-dinitrophenol - HNMA 2-hydroxy-5-nitromuconic acid - HNPA 2-hydroxy-5-nitropenta-2,4-dienoic acid - NB nutrient broth - NMR nuclear magnetic resonance - NPG 4-nitropyrogallol - O.D. optical density - tR retention time - UV/Vis ultraviolet/visible  相似文献   

10.
T Liu  P J Chapman 《FEBS letters》1984,173(2):314-318
2,4-Dichlorophenol hydroxylase, an enzyme involved in the bacterial degradation of the herbicide 2,4-dichlorophenoxyacetate (2,4-D) was purified from two bacterial strains that harbored the same 2,4-D plasmid, pJP4. The purified enzymes (Mr 224 000) from the two transconjugants were indistinguishable; they contained FAD and were composed of non-identical subunits, Mr 67 000 and 45 000, respectively. Various substituted phenols were hydroxylated, using either NADH or NADPH. The amino acid composition of the native enzyme was determined.  相似文献   

11.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2, 4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2, 6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2, 4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

12.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

13.
Tyrocidine A was crystallized from 2-methyl-2,4-pentanediol and water, or methanol, to yield crystals that are large enough for X-ray diffraction studies. Four crystals were examined; three were in equilibrium with mother liquor and the fourth was air-dried. They belong to the rhombohedral space group R32. Parameters of the hexagonal cell of the fully solvated crystals vary slightly and are approximately a = 34 A? and c = 50 A?. The asymmetric unit consists of one molecule of tyrocidine and several molecules of 2-methyl-2,4-pentanediol. Air-dried crystals appear to contain about half the number of solvent molecules. Three-dimensional X-ray diffraction data showing a maximum resolution of s = (1.7 A?)?1 have been recorded.  相似文献   

14.
A new amino acid previously detected in 17 species of Acacia has been isolated from seeds of Acacia angustissima and identified as oxalylalbizziine. These seeds also contain more than 6% dry weight of 2-amino-4-acetylaminobutyric acid, which has not been reported previously in a legume, and lower concentrations of 2,4-diaminobutyric acid.  相似文献   

15.
Smith AR  Beadle CA 《Biodegradation》2008,19(5):669-681
Burkholderia cepacia 2a inducibly degraded 2,4-dichlorophenoxyacetate (2,4-D) sequentially via 2,4-dichlorophenol, 3,5-dichlorocatechol, 2,4-dichloromuconate, 2-chloromuconolactone and 2-chloromaleylacetate. Cells grown on nutrient agar or broth grew on 2,4-D-salts only if first passaged on 4-hydroxybenzoate- or succinate-salts agar. Buffered suspensions of 4-hydroxybenzoate-grown cells did not adapt to 2,4-D or 3,5-dichlorocatechol, but responded to 2,4-dichlorophenol at concentrations <0.4 mM. Uptake of 2,4-dichlorophenol by non-induced cells displayed a type S (cooperative uptake) uptake isotherm in which the accelerated uptake of the phenol began before the equivalent of a surface monolayer had been adsorbed, and growth inhibition corresponded with the acquisition of 2.2-fold excess of phenol required for the establishment of the monolayer. No evidence of saturation was seen even at 2 mM 2,4-dichlorophenol, possibly due to absorption by intracellular poly-beta-hydroxybutyrate inclusions. With increasing concentration, 2,4-dichlorophenol caused progressive cell membrane damage and, sequentially, leakage of intracellular K(+), P(i), ribose and material absorbing light at 260 nm (presumed nucleotide cofactors), until at 0.4 mM, protein synthesis and enzyme induction were forestalled. Growth of non-adapted cells was inhibited by 0.35 mM 2,4-dichlorophenol and 0.25 mM 3,5-dichlorocatechol; the corresponding minimum bacteriocidal concentrations were 0.45 and 0.35 mM. Strain 2a grew in chemostat culture on carbon-limited media containing 2,4-D, with an apparent growth yield coefficient of 0.23, and on 2,4-dichlorophenol. Growth on 3,5-dichlorocatechol did not occur without a supplement of succinate, probably due to accumulation of toxic quantities of quinonoid and polymerisation products. Cells grown on these compounds were active towards all three, but not when grown on other substrates. The enzymes of the pathway therefore appeared to be induced by 3,5-dichlorocatechol or some later metabolite. A possible reason is offered for the environmental persistence of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).  相似文献   

16.
An Alcaligenes denitrificans strain capable of utilizing theherbicide (R)-(+)-2(2-methyl-4-chlorophenoxy)propionicacid (mecoprop) as a sole carbon source was isolated fromsoil and cultured in liquid medium. Crude cell extracts of thebacterium were utilized in spectrophotometric assays toelucidate a biochemical pathway for degradation ofmecoprop. Results indicated a reaction sequence analogousto the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D).GC-MS analysis provided direct evidence for thebiotransformation of mecoprop to the transient metabolite4-chloro-2-methylphenol (MCP). No NADPH-dependentactivity was observed during this reaction. Pyruvate wasverified as the second product derived from the aliphatic sidechain of mecoprop. MCP was subsequently transformed to asubstituted catechol by an NADPH-dependentmonooxygenase. When grown on mecoprop, A.denitrificans was adapted to oxidize catechol and its 4- and3-methylated derivatives indicating the broad substratespecificity of catechol dioxygenase. The microorganism wasdemonstrated to adopt the ortho mechanism of aromaticcleavage which resulted in the formation of2-methyl-4-carboxymethylene but-2-en-4-olide, a reactionintermediate of the -ketoadipate pathway.  相似文献   

17.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

18.
Lo HH  Kao CH  Lee DS  Yang TK  Hsu WH 《Chirality》2003,15(8):699-702
Biosynthesis of (S)-(+)-2-amino-4-phenylbutanoic acid (1) was performed by nonenantioselective hydantoinase and L-N-carbamoylase using racemic 5-[2-phenylethyl]-imidazolidine-2,4-dione (rac-2) as a substrate. The compounds involved in this biocatalysis process could be simultaneously resolved by high-performance liquid chromatography using Chirobiotic T column with a mobile phase of EtOH/H(2)O = 10/90 at pH 4.2-4.5. To our knowledge, this is the first report of the successful production of 1 by the combination of recombinant hydantoinase and L-N-carbamoylase.  相似文献   

19.
The Gram-negative strain S1, isolated from activated sludge, metabolized 4-chloro-2-methylphenol by an inducible pathway via a modifiedortho-cleavage route as indicated by a transiently secreted intermediate, identified as 2-methyl-4-carboxymethylenebut-2-en-4-olide by gas chromatography/mass spectrometry. Beside 4-chloro-2-methylphenol only 2,4-dichlorophenol and 4-chlorophenol were totally degraded, without an accumulation of intermediates. The chlorinated phenols tested induced activities of 2,4-dichlorophenol hydroxylase and catechol 1,2-dioxygenase type II. Phenol itself appeared to be degraded more efficiently via a separate, inducibleortho-cleavage pathway. The strain was characterized with respect to its physiological and chemotaxonomic properties. The fatty acid profile, the presence of spermidine as main polyamine, and of ubiquinone Q-10 allowed the allocation of the strain into the -2 subclass of theProteobacteria. Ochrobactrum anthropi was indicated by fatty acid analysis as the most similar organism, however, differences in a number of physiological features (e.g. absence of nitrate reduction) and pattern of soluble proteins distinguished strain S1 from this species.  相似文献   

20.
The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号