首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We studied phytoplankton population dynamics during the month preceding formation of ice cover in three small subalpine lakes in Rocky Mountain National Park, Colorado, U.S.A. The outflow from Emerald Lake, which is surrounded by talus, flows into Dream Lake, which is surrounded by sub-alpine forest. Nymph Lake is a lower seepage lake with abundant macrophytes in summer. The major ion concentrations in the three lakes were similar during the study, although Emerald and Dream Lakes had higher concentrations of nitrate and silica than Nymph Lake. A principal component analysis (PCA) showed that the phytoplankton in Emerald and Dream Lakes were distinct from the phytoplankton in Nymph Lake. The species composition changed in each lake during the late fall. The patterns of change in Emerald and Dream Lakes were similar on the PCA diagram despite the greater abundance of diatoms in Dream Lake and the decreasing flow from Emerald Lake into Dream Lake during the fall. In Nymph Lake, a progressive shift in species distribution occurred with a decrease in the most abundant chlorophyte, Chlamydomonas sp., and increases in several species, including two chrysophytes and the diatom Eunotia sp. The marked change in species composition in all three lakes suggests that phytoplankton populations are influenced by changes in water temperatures and incident solar radiation that occur during the late fall. We also compared these data with phytoplankton data for two fall periods from two other hydrologically connected Rocky Mountain lakes. PCA analysis showed that the difference between years was greater than the change during the fall and that the fall species composition in these two lakes was distinct from that in Emerald and Dream Lakes or in Nymph Lake. Studying phytoplankton dynamics in alpine and sub-alpine lakes may offer clues as to how these ecosystems may respond to projected climate changes in the Rocky Mountain region, such as warmer temperatures and later formation of ice-cover.  相似文献   

2.
Recent shifts in water quality and food web characteristics driven by anthropogenic impacts on the Laurentian Great Lakes warranted an examination of pelagic primary producers as tracers of environmental change. The distributions of the 263 common phytoplankton taxa were related to water quality variables to determine taxon-specific responses that may be useful in indicator models. A detailed checklist of taxa and their environmental optima are provided. Multivariate analyses indicated a strong relationship between total phosphorus (TP) and patterns in the diatom assemblages across the Great Lakes. Of the 118 common diatom taxa, 90 (76%) had a directional response along the TP gradient. We further evaluated a diatom-based transfer function for TP based on the weighted-average abundance of taxa, assuming unimodal distributions along the TP gradient. The r2 between observed and inferred TP in the training dataset was 0.79. Substantial spatial and environmental autocorrelation within the training set of samples justified the need for further model validation. A randomization procedure indicated that the actual transfer function consistently performed better than functions based on reshuffled environmental data. Further, TP was minimally confounded by other environmental variables, as indicated by the relatively large amount of unique variance in the diatoms explained by TP. We demonstrated the effectiveness of the transfer function by hindcasting TP concentrations using fossil diatom assemblages in a Lake Superior sediment core. Passive, multivariate analysis of the fossil samples against the training set indicated that phosphorus was a strong determinant of historical diatom assemblages, verifying that the transfer function was suited to reconstruct past TP in Lake Superior. Collectively, these results showed that phytoplankton coefficients for water quality can be robust indicators of Great Lakes pelagic condition. The diatom-based transfer function can be used in lake management when retrospective data are needed for tracking long-term degradation, remediation and trajectories.  相似文献   

3.
The phytoplankton and productivity of the North American Great Lakes has been studied extensively by Fisheries and Oceans Canada during the past 15 years to monitor the impact of nutrient and contaminant loading on the plankton of the ecosystem. Lakewide cruises were conducted at monthly intervals mainly during the spring to fall period. This provided extensive biomass, species, size, productivity and nutrient concentration data for the Great Lakes. These data were collected using the Utermöhl inverted microscope technique together with standardized taxonomic, productivity and data-handling procedures. These standardized methodologies were applied to all the Great Lakes which resulted in a comprehensive phycological and ecological data base for the first time. These data form the basis for the evaluation of the complex phenomenon of seasonality.The eutrophic/mesotrophic Lower Great Lakes exhibited well-developed seasonal peaks of high biomass, with inshore-offshore differentiation and spring maxima most pronounced in the inshore region. However, the oligotrophic Upper Great Lakes had low biomass and generally lacked well-developed seasonal patterns. No marked seasonal trends were observed in the ultra-oligotrophic Lake Superior. The seasonality of biomass and various taxonomic groups of phytoplankton showed differentiation between individual lakes and is discussed in detail. The seasonal succession of species provided interesting comparisons between the Lower Great Lakes, which harbour eutrophic and mesotrophic species, and the Upper Great Lakes, which harbour oligotrophic species.Due to the voluminous nature of our data, a general overview has been given for all the Great Lakes with Lake Ontario treated in detail as a case study. The Lake Ontario case study provides the state-of-the-art status ranging from the lakewide surveys of 1970 to the current research with minute organisms such as ultraplankton and picoplankton.  相似文献   

4.
《Aquatic Botany》2007,87(4):307-319
Short-term variability of spatial heterogeneity of submersed macrophyte biovolume (percent of water column occupied by vegetation) was evaluated over 3 years along a gradient of productivity in four north temperate glacial lakes in Minnesota, USA. We hypothesized we would observe the lowest among-year variability in spatial heterogeneity of biovolume in our undisturbed, moderately productive lake and high variability in our more locally disturbed productive lakes. Our analysis involved three major steps: first, we removed negative trends of biovolume across depth with non-parametric regression smoothers; second, we examined spatial pattern in residuals using variograms; finally, we compared spatial pattern of biovolume among lakes seasonally, over 3 years. Lake productivity negatively correlated with water clarity and the depth range of macrophyte growth, and positively correlated with the variability of spatial patterns. In the least disturbed moderately productive lake, vegetation grew over a large range of depths (up to 7.5 m), and spatial pattern across the littoral zone was similar for each survey. In contrast, in the more turbid, productive lakes, depth and spatial patterns of biovolume varied greatly from survey to survey. Factors that increase productivity and weaken resilience in lakes may lead to unstable spatial patterns of macrophyte biovolume.  相似文献   

5.
《Aquatic Botany》2008,88(4):307-319
Short-term variability of spatial heterogeneity of submersed macrophyte biovolume (percent of water column occupied by vegetation) was evaluated over 3 years along a gradient of productivity in four north temperate glacial lakes in Minnesota, USA. We hypothesized we would observe the lowest among-year variability in spatial heterogeneity of biovolume in our undisturbed, moderately productive lake and high variability in our more locally disturbed productive lakes. Our analysis involved three major steps: first, we removed negative trends of biovolume across depth with non-parametric regression smoothers; second, we examined spatial pattern in residuals using variograms; finally, we compared spatial pattern of biovolume among lakes seasonally, over 3 years. Lake productivity negatively correlated with water clarity and the depth range of macrophyte growth, and positively correlated with the variability of spatial patterns. In the least disturbed moderately productive lake, vegetation grew over a large range of depths (up to 7.5 m), and spatial pattern across the littoral zone was similar for each survey. In contrast, in the more turbid, productive lakes, depth and spatial patterns of biovolume varied greatly from survey to survey. Factors that increase productivity and weaken resilience in lakes may lead to unstable spatial patterns of macrophyte biovolume.  相似文献   

6.
Dreissenid mussels have been hypothesized to cause selective decreases of phytoplankton in nearshore areas (nearshore shunt hypothesis) as well as the near-complete loss of the offshore phytoplankton spring bloom in some Laurentian Great Lakes. To evaluate whether mussels can reasonably be expected to mediate such changes, we extended the three-dimensional hydrodynamic-ecological model (ELCOM-CAEDYM) to include mussels as a state variable and applied it to Lake Erie (USA-Canada). Mussel-mediated decreases in mean phytoplankton biomass were highly sensitive to the assigned mussel population size in each basin. In the relatively deep east basin, mussels were predicted to decrease phytoplankton in both nearshore and offshore zones, even during periods of thermal stratification but especially during the spring phytoplankton maximum. Spatially, impacts were associated with mussel distributions but could be strong even in areas without high mussel biomass, consistent with advection from areas of higher mussel biomass. The results supported the nearshore shunt hypothesis that mussel impacts on phytoplankton should be greater in nearshore than offshore waters and also supported suggestions about the emerging importance of deep water offshore mussels. The results of this study provide an important insight into ecological role of mussels in lowering plankton productivity in some world’s largest lakes.  相似文献   

7.
We evaluated the variability of cyanotoxins, water chemistry, and cyanobacteria communities in two hypereutrophic drowned river mouth lakes (Spring Lake and Mona Lake; summer 2006) in west Michigan, USA. Even with considerable geographical and watershed similarity, local variations in nutrient concentrations and environmental factors were found to influence the differences observed in cyanobacteria assemblages and cyanotoxins levels between the two lakes. Limnothrix sp. dominated the phytoplankton community in Spring Lake (82% of biovolume) and was negatively correlated with total phosphorus (TP) concentrations. Although Spring Lake was treated with alum during the previous year, Limnothrix sp. was able to bloom in the lower P environment. In contrast, the N2-fixing cyanobacterium, Anabaena flos-aquae, dominated the phytoplankton in Mona Lake (64% of biovolume). N2-fixing cyanobacteria dominance in Mona Lake was correlated with higher TP lower dissolved nitrogen levels. Cylindrospermopsis raciborskii was found in both systems; however, the toxin-producing polyketide synthetase gene was not present in either population. The higher TP in Mona Lake appeared to account for the 3-fold increase in cyanobacteria biovolume. Restoration plans for both lakes should include assessments of internal loading and continued phytoplankton monitoring to track the temporal distribution of cyanobacteria species and cyanotoxin concentrations.  相似文献   

8.
中国中东部平原亚热带湿润区湖泊营养物生态分区   总被引:2,自引:1,他引:1  
湖泊营养物生态分区是实现湖泊分区控制的前提和基础。以中国中东部平原亚热带湿润区为案例区,根据区域特点,从自然地理要素、生态系统和人类活动三方面建立指标体系,对各指标进行归一化得到各指标数据的分值;采用AHP方法确定各指标的权重值,结合各指标分值计算栅格尺度上湖泊营养物生态分区综合评价分值;根据研究区域DEM数据划分小流域,将栅格尺度的湖泊营养物生态分区综合评价分值投影到小流域尺度上,采用双约束空间聚类算法对小流域尺度上湖泊营养物生态分区评价分值进行聚类得到湖泊营养物生态分区结果。结果表明:(1)AHP可以用来确定复杂指标体系中各指标的权重,适合用于确定湖泊营养物生态分区指标体系中各指标的权重;(2)采用双约束空间聚类进行湖泊营养物生态分区,保证了分区结果在空间上的连续性和评价分值上的接近性;(3)根据自然地理条件、土地利用和人类活动强度的不同,可以将中东部平原亚热带湿润区划分为长江中下游平原湖区、湘赣平原丘陵湖区、湘渝山地湖区、四川盆地湖区、川西—大巴山山地湖区5个营养物生态区。  相似文献   

9.
Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole‐lake production may be benthic. The large declines (5–45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near‐shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes.  相似文献   

10.
Over 2000 coastal wetland complexes have been identified in the Laurentian Great Lakes watershed, each providing critical habitat for numerous aquatic and terrestrial species. Research has shown there is a direct link between anthropogenic activities (urbanization and agricultural development) and deterioration in wetland health in terms of water quality and biotic integrity. In this study, we evaluate coastal marshes throughout the Great Lakes basin using a suite of published ecological indices developed specifically for coastal wetlands of the Great Lakes (Water Quality Index (WQI), Wetland Macrophyte Index (WMI), and the Wetland Fish Index (WFIBasin)). We surveyed 181 wetlands, including 19 in Lake Superior (11%), 11 in Lake Michigan (6%), 13 in Lake Huron (7%), 92 in Georgian Bay and the North Channel (51%), 18 in Lake Erie (10%), and 28 in Lake Ontario (15%), over a 13 year period (1995–2008). Water quality parameters were measured at every site, while paired fyke nets were used to assess the fish community (132 sites) and macrophytes were surveyed and identified to species (174 sites); all of this information was used to calculate the associated index scores. One-way ANOVA results showed that there were significant differences in wetland quality among lakes. According to the WQI, we found that over 50% of marshes in Lakes Michigan, Erie, and Ontario were in degraded condition, while over 70% of marshes in Lakes Superior, Huron, and Georgian Bay were minimally impacted. Georgian Bay had the highest proportion of wetlands in very good and excellent condition and least number of wetlands in a degraded state. The WMI and WFI showed similar results. This is the largest bi-national database of coastal wetlands and the first study to provide a snapshot of the quality of coastal habitats within the Great Lakes basin. We recommend this information be used to guide conservation and restoration efforts within the Laurentian Great Lakes.  相似文献   

11.
Long‐term data on water temperature, phytoplankton biovolume, Bosmina and Daphnia abundance and the timing of the clear‐water phase were compared and analysed with respect to the influence of the North Atlantic Oscillation (NAO) in two strongly contrasting lakes in central Europe. In small, shallow, hypertrophic Müggelsee, spring water temperatures and Daphnia abundance both increased more rapidly than in large, deep, meso/oligotrophic Lake Constance. Because of this, the clear‐water phase commenced approximately three weeks earlier in Müggelsee than in Lake Constance. In Müggelsee, the phytoplankton biovolume during late winter/early spring was related to the NAO index. In Lake Constance, where phytoplankton growth was inhibited by intense downward mixing during all years studied, this was not the case. However, in both lakes, interannual variability in water temperature, in Daphnia spring population dynamics and in the timing of the clear‐water phase, were all related to the interannual variability of the NAO index. The Daphnia spring population dynamics and the timing of the clear‐water phase appear to be synchronized by the NAO despite large differences between the lakes in morphometry, trophic status and flushing and mixis regimes, and despite the great distance between the lakes (~700 km). This suggests that a great variety of lakes in central Europe may possibly have exhibited similar interannual variability during the last 20 years.  相似文献   

12.
Phytoplankton and water samples were collected at 12 locations along the temperate lowland Rideau River, Ontario, Canada. The stations were visited twice a month from May to September 1998, 1999, and 2000. Phytoplankton communities were quantified based on cell abundance, entity abundance (colonies, filaments or free-living cells) and biomass (converted from biovolume estimates based on cell shape and biometry), and were expressed as absolute and relative values. The resulting phytoplankton dataset was composed of six different metrics. The general objective was to assess which metric best explained the spatial and temporal variability in the phytoplankton communities of the Rideau River in response to fluctuating environmental variables. Relationships between phytoplankton metrics and water quality variables were assessed using canonical correspondence analyses. The absolute cell abundance metric showed the best relationship with water quality, followed by the cell entity metric. The biomass metric showed the poorest relationship with water quality variables, indicating that accounting for cell size does not provide additional information. The data expressed as absolute values were consistently better predictors of water quality compared to relative values.  相似文献   

13.
The diversity of Laurentian Great Lakes ciscoes (Coregonus artedi, sensu lato) arose via repeated local adaptive divergence including deepwater ciscoes that are now extirpated or threatened. The nigripinnis form, or Blackfin Cisco, is extirpated from the Great Lakes and remains only in Lake Nipigon. Putative nigripinnis populations were recently discovered in sympatry with artedi in a historical drainage system of glacial Lake Algonquin, the precursor of lakes Michigan and Huron. Given the apparent convergence on Great Lakes form, we labeled this form blackfin. Here, we test the hypothesis that nigripinnis may have colonized this area from the Great Lakes as a distinct lineage. It would then represent a relict occurrence of the historical diversity of Great Lakes ciscoes. Alternatively, blackfin could have evolved in situ in several lakes. We captured more than 600 individuals in the benthic or pelagic habitat in 14 lakes in or near Algonquin Provincial Park (Ontario, Canada). Fish were compared based on habitat, morphology, and genetic variation at 6,676 SNPs. Contrary to our expectations, both cisco and blackfin belonged to an Atlantic lineage that colonized the area from the east, not from the Great Lakes. Sympatric cisco and blackfin were closely related while fish from different lakes were genetically differentiated, strongly suggesting the repeated in situ origin of each form. Across lakes, there was a continuum of ecological, morphological, and genetic differentiation that could be associated with alternative resources and lake characteristics. This study uncovers a new component of cisco diversity in inland lakes of Canada that evolved independently from ciscoes of the Laurentian Great lakes. The diversity of cisco revealed in this study and across their Canadian range presents a challenge for designating conservation units at the intraspecific level within the framework of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).  相似文献   

14.
The Laurentian Great Lakes are a vast, interconnected freshwater system spanning strong physicochemical gradients, thus constituting a powerful natural laboratory for addressing fundamental questions about microbial ecology and evolution. We present a comparative analysis of pelagic microbial communities across all five Laurentian Great Lakes, focusing on Bacterial and Archaeal picoplankton characterized via 16S rRNA amplicon sequencing. We collected samples throughout the water column from the major basins of each lake in spring and summer over 2 years. Two oligotypes, classified as LD12 (Alphaproteobacteria) and acI-B1 (Actinobacteria), were among the most abundant in every sample. At the same time, microbial communities showed distinct patterns with depth during summer stratification. Deep hypolimnion samples were frequently dominated by a Chloroflexi oligotype that reached up to 19% relative abundance. Stratified surface communities differed between the colder, less productive upper lakes (Superior, Michigan, Huron) and warmer, more productive lower lakes (Erie, Ontario), in part due to an Actinobacteria oligotype (acI-C2) that averaged 7.7% of sequences in the lower lakes but <0.2% in the upper lakes. Together, our findings suggest that both hydrologic connectivity and local selective pressures shape microbial communities in the Great Lakes and establish a framework for future investigations.  相似文献   

15.
The Great Lakes of East Africa are among the world’s most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation). Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.  相似文献   

16.
Piburger See, a dimictic mountain lake in Austria, experienced moderate cultural eutrophication in the 1950s. Lake restoration led to a re-oligotrophication in the 1990s with a decrease in seasonal phytoplankton biovolume until the late 1990s, but a reversed trend from the early 2000s onwards. We hypothesize that recent changes in phytoplankton biomass and functional structure are triggered by changes in lake nitrogen and silica concentrations, and we expect climate-related factors to modulate the trophic status of Piburger See. Phytoplankton data were analyzed by non-metric multidimensional scaling (NMDS) applied on biovolume of morpho-functional groups, combined with correlation analyses of environmental variables. Since the 2000s, short-term changes in phytoplankton of Piburger See were explained by varying concentrations and ratios of nitrogen and silica, while the inter-annual variability in phytoplankton species composition was rather attributed to superimposed rising water temperature and lake thermal stability. Our results underline the co-dominant role of phosphorus and nitrogen as phytoplankton drivers in lakes that experience periods of nitrogen limitation. The combined impact of nutrients and climate on phytoplankton development can thus mimic short-term increases in the trophic level of less productive lakes.  相似文献   

17.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

18.
For the past six decades, parasitic sea lampreys (Petromyzon marinus) have caused devastating losses to salmonid fisheries in the Great Lakes. To reduce the number of sea lampreys, the Great Lakes Fishery Commission began a large-scale program based on trapping male sea lampreys, sterilizing them, and releasing sterile males back into streams to compete with fertile males for spawning females. The transfer of lampreys among lakes can potentially lead to the transfer of various pathogens, and this has raised major concerns regarding the possibility of resident fish populations becoming infected by introduced pathogens. During a health inspection of sea lampreys collected from Lake Ontario, lampreys with obvious furuncle-like lesions (1-2 cm in diameter) were noticed. Most of the furuncles occupied the dorso-lateral musculature, and Aeromonas salmonicida subsp. salmonicida was isolated from the kidneys. This bacterium was cultured from kidneys of 2.5% of the sea lampreys collected from two locations within the Lake Ontario watershed in 2004. The identity of bacterial colonies was presumptively verified with biochemical reactions and confirmed with polymerase chain reaction. This is the first report of A. salmonicida infection in sea lamprey in the Great Lakes basin associated with furunculosis.  相似文献   

19.
The impacts of temperature and eutrophication on Cyanobacteria blooms were investigated thorugh a time–space trade-off approach. The limnological data of three Lakes, Taihu, Yanghe and Miyun, monitored from 2010 to 2012 were used. After categorising the three lakes by trophic state and water temperature, the study tested: (1) the response of phytoplankton to elevated temperature, by comparing Lakes Taihu and Yanghe, which are different in climate but similar in trophic state; and (2) the response of phytoplankton to higher nutrient concentrations, by comparing Lakes Yanghe and Miyun, which are different in trophic state but similar in climate. Results clearly showed that water temperature was the principle factor contributing to the higher abundance of Microcystis in Lake Taihu compared to Lake Yanghe. By contrast, higher abundance of Microcystis in Lake Yanghe compared to Lake Miyun could be clearly associated with higher nutrient levels in Lake Yanghe, supported by findings of PO4-P limitation in Lake Miyun. The study demonstrated that time–space trade-off is a promising approach to manipulate short datasets from different lakes to discover meaningful information.  相似文献   

20.
The aquatic invertebrates found between the roots of Eichhornia crassipes plants from Lakes Cubhu and Nsezi were analysed and compared with each other. Root samples in Lake Cubhu were dominated by Corophium triaenonyx and Caridina nilotica whilst root samples from Lake Nsezi were dominated by oligochaetes, cladocerans and copepods. Species distribution within the lakes also differed as Lake Cubhu displayed a strong spatial variation whereas there was a temporal variation in Lake Nsezi. Although the differences in spatial/temporal variation cannot be adequately explained from the data presented, community structure is most probably related to specific physical conditions present within the lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号