首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolution of direct-developing larvae: selection vs loss   总被引:3,自引:0,他引:3  
Observations of a sea urchin larvae show that most species adopt one of two life history strategies. One strategy is to make numerous small eggs, which develop into a larva with a required feeding period in the water column before metamorphosis. In contrast, the second strategy is to make fewer large eggs with a larva that does not feed, which reduces the time to metamorphosis and thus the time spent in the water column. The larvae associated with each strategy have distinct morphologies and developmental processes that reflect their feeding requirements, so that those that feed exhibit indirect development with a complex larva, and those that do not feed form a morphologically simplified larva and exhibit direct development. Phylogenetic studies show that, in sea urchins, a feeding larva, the pluteus, is the ancestral form and the morphologically simplified direct-developing larva is derived. The current hypothesis for evolution of the direct-developing larval form in sea urchins suggests that major developmental changes occur by neutral loss of larval features after the crucial transition to a nonfeeding life history strategy. We present evidence from Clypeaster rosaceus, a sea urchin with a life history intermediate to the two strategies, which indicates that major developmental changes for accelerated development have been selected for in a larva that can still feed and maintains an outward, pluteus morphology. We suggest that transformation of larval form has resulted from strong selection on early initiation and acceleration of adult development.  相似文献   

2.
A significant fraction of living sea urchin species have completely or partially eliminated the pluteus larval stage and instead develop directly from embryo to adult. Direct developing sea urchins develop from large buoyant eggs. We present data to show that evolution of these large eggs is accompanied by the evolution of spermatozoa with elogate heads, in contrast with the conical sperm heads typical of most echinoids. Two congeneric Australian species, Heliocidaris tuberculata , which develops via a pluteus, and H. erythogramma , a direct developer, were investigated in detail. The sperm of H. erythrogramma have an elongate head (11 μm in length) as compared to the conical sperm head (5.6 μm) of H. tuberculata . Electrophoretic analysis of the sperm histones indicates that no unusual histones or protamines are associated with modified head morphology. Genome sizes were determined by flow cytometry. H. erythrogramma has a haploid genome size of 1.3 pg as compared to a haploid genome size of 0.95 pg for H. tuberculata . Other direct developing echinoids have elongate sperm heads, and co-evolution of gametes is indicated as a common feature of evolution of direct development in echinoids. The most extreme case, the direct developing cidaroid sea urchin, Phyllacanthus parvispinus , possesses the longest and narrowest sperm head (20 μm × 1 μm) ever observed in an echinoid.  相似文献   

3.
To understand the role of body axes in the evolution of larval form, we use the two sea urchins in the genus Heliocidaris, which have distinctly different larval morphologies. Heliocidaris tuberculata is an indirect-developing sea urchin, which forms a pluteus larva, whereas its sister species, Heliocidaris erythrogramma, exhibits direct development and forms a nonfeeding, ovoid larva. Changes along all three larval axes underlie the differences in larval form associated with each developmental mode. Nodal signaling has recently been implicated as important in establishing the dorsal-ventral (D-V) and left-right (L-R) axes in the indirect-developing sea urchin Paracentrotus lividus. However, because of changes in morphology and timing of morphogenetic events associated with the D-V and L-R axes, respectively, in H. erythrogramma, it was unclear whether nodal played the same roles during direct development. We show that the expression patterns and functions of nodal during H. erythrogramma development are similar to its roles in indirect-developing sea urchins in both D-V and L-R axes formation. However, there are profound changes in gene expression downstream of nodal signaling along the D-V axis and major heterochronies in the execution of the function of nodal along the L-R axis. These highly modified events are linked to the dramatic modifications of larval morphology that have occurred during the evolution of direct development in H. erythrogramma.  相似文献   

4.
Convergence is a significant evolutionary phenomenon. Arrival at similar morphologies from different starting points indicates a strong role for natural selection in shaping morphological phenotypes. There is no evidence yet of convergence in the developmental mechanisms that underlie the evolution of convergent developmental phenotypes. Here we report the expression domains in sea urchins of two important developmental regulatory genes ( Orthodenticle and Runt), and show evidence of molecular convergence in the evolution of direct-developing sea urchins. Indirect development is ancestral in sea urchins. Evolutionary loss of the feeding pluteus stage and precocious formation of the radially symmetric juvenile has evolved independently in numerous sea urchin lineages, thus direct development is an evolutionary convergence. Indirect-developing species do not express Otx during the formation of their five primordial tube feet, the ancestral condition. However, each direct-developing urchin examined does express Otx in the tube feet. Otx expression in the radial arms of direct-developing sea urchins is thus convergent, and may indicate a specific need for Otx use in direct development, a constraint that would make direct development less able to evolve than if there were multiple molecular means for it to evolve. In contrast, Runt is expressed in tube feet in both direct- and indirect-developing species. Because echinoderms are closely related to chordates and postdate the protostome/deuterostome divergence, they must have evolved from bilaterally symmetrical ancestors. Arthropods and chordates use Otx in patterning their anterior axis, and Runt has multiple roles including embryonic patterning in arthropods, and blood and bone cell differentiation in vertebrates. Runt has apparently been co-opted in echinoderms for patterning of pentamery, and Otx in pentameral patterning among direct-developing echinoids. The surprisingly dynamic nature of Otx evolution reinvigorates debate on the role of natural selection vs shared ancestry in the evolution of novel features.  相似文献   

5.
Effects of NO-synthase inhibitors N-nitro-L-arginine (L-NA) and its methylated ether (L-NAME) on embryonic development of sea urchins Paracentrotus lividus and Arbacia lixula were studied from the time of fertilization to the stage of transition to active nutrition (stage of the later pluteus 2). It has been shown that L-NAME (but not D-NAME) and L-NA (0.01–0.02 mM) produce a dose-dependent inhibition of growth of arms and apex of pluteus larvae, while differentiation of the intestine, coelom, pigment cells, and ciliated epithelium occurs without observable disturbances. A period of sensitivity to NO-synthase inhibitors was revealed; it coincided with the beginning of intensive spiculogenesis leading to elongation of arms and apex of the pluteus larva of the stage (prism 2—early pluteus 2). It is suggested that interaction of ectodermal cells with the primary mesenchime cells and extracellular matrix in morphogenetic processes providing formation of arms and apex of the pluteus larva can be modulated by NO in ontogenesis of sea urchins P. lividus and A. lixula.  相似文献   

6.
Insulin-related molecules and insulin effects in the sea urchin embryo   总被引:7,自引:0,他引:7  
Insulin, the polypeptide hormone secreted by the differentiated pancreas, may play a role in vertebrate development at prepancreatic stages. In an invertebrate embryo, the sea urchin Strongylocentrotus purpuratus, we now find that insulin modulates the levels of developmentally regulated mRNAs of different lineages (one ectoderm-specific, one mesoderm-specific, and one found in all cell types). Using indirect immunofluorescence, we have localized a molecule which shares antigenic determinants with mammalian insulin in the unfertilized egg as well as in the gut of pluteus larva sea urchins. In addition, Southern hybridization reveals high similarity between sea urchin DNA sequences and the human insulin receptor gene. Our results suggest the presence of an insulin/insulin receptor-related system in sea urchin development.  相似文献   

7.
The spatial and temporal expression pattern of cyclophilin (Cyp) was examined during the embryonic development of the sea urchins Anthocidaris crassispina and Hemicentrotus pulcherrimus using Western blot analysis and indirect immunofluorescence microscopy. In this study, affinity-purified anti-human Cyp A antibody was used as the primary antibody. Western blot analysis revealed that a single 17.5 kDa immunoreactive band of Cyp was present in unfertilized eggs, in embryos during several stages of development, and in ovaries and testes of adult sea urchins. Cyp was also recognized in unfertilized eggs and embryonic sea urchin cells by indirect immunofluorescence microscopy, but its concentrations within the embryonic tissues varied significantly during embryogenesis. Expression of Cyp during the cleavage stage was thought to be attributable to maternal Cyp products, with zygotic expression appearing after gastrulation. Cyp expression appears to increase depending on the Cyp concentration in the vegetal and apical plates and primary mesenchyme cells in mesenchyme blastulae, and in the oral ectodermal ridge, gut and skeletogenetic mesenchyme cells in pluteus larvae. These results suggest that widespread embryonic distribution and an increased Cyp content occur during the gastrulation in sea urchin development.  相似文献   

8.
Acetylcholine esterase (AchE) and non-specific esterases were studied during the development of sea urchins Strongylocentrotus droebachiensis and S. intermedius and their hybrids by means of electrophoresis and measurements of enzyme thermostability. Two AchE fractions were found which differed by thermostability. At the late gastrula stage, the therolabile form predominated and at the mid-pluteus stage the thermostable one. Non-specific esterases in both the species of sea urchins are represented by complex isozyme systems. Their changes during development are accompanied by the changes in thermostability and electrophoretic patterns. The thermostability of esterases at the pluteus stage in the hybrids is higher than in the maternal species, apparently, due to the appearance of the thermostable enzyme which appears in the paternal species provisionally at the prism stage.  相似文献   

9.
10.
The behavior and differentiation processes of pigment cells were studied in embryos of a tropical sea urchin Echinometra mathaei, whose egg volume was one half of those of well-known sea urchin species. Owing to earlier accumulation of pigments, pigment cells could be detected in the vegetal plate even before the onset of gastrulation, distributed dorsally in a hemi-circle near the center of the vegetal plate. Although some pigment cells left the archenteron during gastrulation, most of them remained at the archenteron tip. At the end of gastrulation, pigment cells left the archenteron and migrated into the blastocoele. Unlike pigment cells in typical sea urchins, however, they did not enter the ectoderm, and stayed in the blastocoele even at the pluteus stage. It is of interest that the majority of pigment cells were distributed in the vicinity of the larval skeleton. Aphidicolin treatment revealed that eight blastomeres were specific to pigment cell lineage after the eighth cleavage, one cell cycle earlier than that in well-known sea urchins. The pigment founder cells divided twice, and the number of pigment cells was around 32 at the pluteus stage. It was also found that the differentiation of pigment cells was blocked with Ni2+, whereas the treatment was effective only during the first division cycle of the founder cells.  相似文献   

11.
Abstract

Diadema setosum (Leske, 1778) develops from small isolecithal eggs with a diameter of 84 ± 3 μm. Embryonic development took about 6.5–7 h and finished when a blastula left the fertilization envelope and became a larva. At this stage, the first pigment cells had appeared. At 23 h a prism developed; at 44 h a pluteus with one pair of arms had appeared; at 45 h of development plutei had two pairs of arms. The pigment cells colour the pluteus of D. setosum dark red. When 20-day-old larvae were mechanically stimulated, they flared their arms which may be defensive behaviour. During further development, the post oral arms of plutei grew to 1900 μm or more. Metamorphosis took place at about 40–45 days. At this time, five primary ambulacral podia were visible within the larval body. The duration of metamorphosis from the moment of larval settlement until the juvenile sea urchins began to move along the bottom was 40–60 min. The diameter of the test of the newly metamorphosed juvenile sea urchins was about 500 μm.  相似文献   

12.
Indirect development via a feeding pluteus larva represents the ancestral mode of sea urchin development. However, some sea urchin species exhibit a derived form of development, called direct development, in which features of the feeding larva are replaced by accelerated development of the adult. A major difference between these two developmental modes is the timing of the formation of the left coelom and initiation of adult development. These processes occur much earlier in developmental and absolute time in direct developers and may be underlain by changes in morphogenetic processes. In this study, we explore whether differences in the cellular mechanisms responsible for the development of the left coelom and adult structures are associated with the change in the timing of their formation in the direct-developing sea urchin Heliocidaris erythrogramma. We present evidence that left coelom formation in H. erythrogramma, which differs in major aspects of coelom formation in indirect developers, is not a result of cell division. Further, we demonstrate that subsequent development of adult structures requires cell division.  相似文献   

13.
An examination of the size and relative abundance of actin-coding RNA in embryos of four sea urchins (Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, Arbacia punctulata, Lytechinus variegatus) and one sand dollar (Echinarachnius parma) reveals a generally conserved program of expression. In each species the relative abundance of these sequences is low in early embryos and begins to rise during late cleavage or blastula stages. In the four sea urchins, actin-coding RNAs increase between approximately 9- and 35-fold by pluteus or an earlier stage, and in the sand dollar about 5.5-fold by blastula. A major actin-coding RNA class of 2.0-2.2 kilobases (kb) is found in each species. A smaller actin-coding RNA class, which accumulates during embryogenesis, is also present in S. purpuratus (1.8 kb), S. droebachiensis (1.9 kb), and A. punctulata (1.6 kb), but apparently absent in L. variegatus and E. parma. In S. droebachiensis, actin-coding RNA is relatively abundant in unfertilized eggs and drops sharply by the 16-cell stage. This is in contrast to the other sea urchins where the actin message content is relatively low in eggs and does not change substantially in the embryos throughout early cleavage. The observations in this study suggest that the pattern of embryonic expression of at least some members of this gene family is ancient and conserved.  相似文献   

14.
In Arbacia punctulata and Strongylocentrotus purpuratus, two species of sea urchins, collagen synthesis begins during gastrulation and increases many-fold before reaching a plateau in the late pluteus stage. A collagen extraction method involving treatment with 0.1 M NaOH and hot 10% trichloroacetic acid provided the basis for a sensitive assay of collagen synthesis.  相似文献   

15.
1. The presence of serotonin binding sites in blastula, gastrula, prism, and pluteus embryos of the sea urchin, Arbacia punctulata, was investigated by the binding of radiolabelled serotonin to dissociated embryo cells. 2. [3H]serotonin binding sites were identified in prism, early pluteus, and advanced pluteus larvae, but not in blastula or gastrula embryos. 3. The ontogeny of [3H]serotonin binding activity closely parallels that of serotonin content as previously reported in Paracentrotus lividus embryos (Toneby, 1977a). 4. Results of this study support a regulatory role of serotonin in developmental processes in postgastrula sea urchin embryos.  相似文献   

16.
17.
Development of the larval serotonergic nervous system is examined by indirect immunofluorescence in two congeneric species of sea urchins that exhibit divergent embryonic and larval development. Heliocidar is tuberculata undergoes indirect planktotrophic development via a pluteus larva, whereas Heliocidaris erythrogramma develops directly, passing through a brief, highly derived lecithotrophic larval stage. We have cleared the opaque embryos of H. erythrogramma and discuss internal features of its development. The serotonergic nervous system of H. tuberculata arises in the apical plate at the end of gastrulation and develops into a bilaterally symmetric ganglion lying between the anterolateral arms in the preoral hood. Putatively homologous neurons appear at the apical end of the modified larva of H. erythrogramma well after the completion of gastrulation, coincident with development of the primary podia of the adult rudiment. The neurons form a bilaterally symmetric ganglion whose orientation relative to the vestibule is conserved with respect to that found in planktotrophic larvae. This allows us to define a left and right side for this larva which lacks external points of asymmetry such as a larval mouth. The alteration in the time of nervous system development in H. erythrogramma relative to that of H. tuberculata , and other indirect developers, implicates heterochronies in cellular differentiation as an important component of the evolution of direct development.  相似文献   

18.
Embryos of the indirect developing sea urchin, Heliocidaris tuberculata, and of Heliocidaris erythrogramma which develops directly without the formation of a pluteus larva, were bisected at the two- and four-cell stages. Paired half-embryos resulting from the bisection of H. tuberculata embryos along either the first or the second cleavage plane develop identically into miniature prism stage larvae. As in other indirect developing sea urchins, no differential segregation of developmental potential takes place as a result of the first and second cleavage divisions. Although half-embryos resulting from bisection along the second cleavage plane differentiate all cell types and develop equivalently in H. erythrogramma, the isolated first cleavage blastomeres do not. One of these two cells always forms significantly more mesodermal and endodermal cells. These patterns of differentiation are consistent with fate-mapping studies indicating that most mesodermal and endodermal cells are derived from the prospective ventral blastomere. Therefore, a differential segregation of developmental potential takes place at the first cleavage division in H. erythrogramma. When embryos of H. erythrogramma were bisected during the eight-cell stage, isolated tiers of animal blastomeres typically formed only ectodermal structures including the vestibule, whereas vegetal embryo halves formed all differentiated cell types. We propose that animal-vegetal cell determination and differentiation takes place along an axis which has been shifted relative to the pattern of cell cleavages in the embryos of H. erythrogramma. Vegetal morphogenetic potential for the formation of mesodermal and endodermal structures has become more closely associated with the prospective ventral side of the embryo during the evolution of direct development in Heliocidaris.  相似文献   

19.
 We describe an evolutionary comparison of expression of the actin gene families of two congeneric sea urchins. Heliocidaris tuberculata develops indirectly via a planktonic feeding pluteus that forms a juvenile rudiment after a long period of larval development. H. erythrogramma is a direct developer that initiates formation of a juvenile rudiment immediately following gastrulation. The developmental expression of each actin isoform of both species was determined by in situ hybridization. The observed expression patterns are compared with known expression patterns in a related indirect-developing sea urchin, Strongylocentrotus purpuratus. Comparisons reveal unexpected patterns of conserved and divergent expression. Cytoplasmic actin, CyIII, is expressed in the aboral ectoderm cells of the indirect developers, but is an unexpressed pseudogene in H. erythrogramma, which lacks aboral ectoderm. This change is correlated with developmental mode. Two CyII actins are expressed in S. purpuratus, and one in H. erythrogramma, but no CyII is expressed in H. tuberculata despite its great developmental similarity to S. purpuratus. CyI expression differs slightly between Heliocidaris and Strongylocentrotus with more ectodermal expression in Heliocidaris. Evolutionary changes in actin gene expression reflect both evolution of developmental mode as well as a surprising flexibility in gene expression within a developmental mode. Received: 27 July 1997 / Accepted: 30 December 1997  相似文献   

20.
To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号